具体数学-第13课(组合数各种性质)

原文链接:

具体数学-第13课 - WeiYang Blog
首先庆祝我自己顺利毕业了,忙完了毕业论文答辩一直在浪,所以上周的具体数学没有更新,现在补更一下,大家见谅。


首先这节课讲的基本都是组合数的相关性质,而且特别多,所以我就不在这里详细证明了,如果你们对某一个性质感兴趣,可以自己证明去。

性质1

首先将组合数推广到负数域,也就是底数为负数的情况:
\left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right) = {( - 1)^k}\left( {\begin{array}{\*{20}{c}}{k - r - 1}\\k\end{array}} \right)
证明可以从下降阶乘幂的定义直接得到。

性质2

由于
\left( {\begin{array}{\*{20}{c}}{m + n}\\m\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{m + n}\\n\end{array}} \right)
所以由性质1可得
{( - 1)^m}\left( {\begin{array}{\*{20}{c}}{ - n - 1}\\m\end{array}} \right) = {( - 1)^n}\left( {\begin{array}{\*{20}{c}}{ - m - 1}\\n\end{array}} \right)

性质3

\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right){ {( - 1)}^k}} = {( - 1)^m}\left( {\begin{array}{\*{20}{c}}{r - 1}\\m\end{array}} \right)
这就说明了杨辉三角同一行的前面若干项交错和是可以求得的,但是它们的直接和是无法求出的。

性质4

\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){x^k}{y^{m - k}} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{ - r}\\k\end{array}} \right){ {( - x)}^k}{ {(x + y)}^{m - k}}} }
证明可以通过令
{S_m} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){x^k}{y^{m - k}}} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r - 1}\\k\end{array}} \right){x^k}{y^{m - k}}} + \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r - 1}\\{k - 1}\end{array}} \right){x^k}{y^{m - k}}}
将左边表示成递归式的形式,同理如果右边可以表示成相同的递归式,那么左右就相等了。

性质4看起来特别复杂,那么它有什么用呢?如果令 xy 等于不同的值,那么就可以得到许多不同的恒等式。

性质5

x = - 1,y = 1 可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){ {( - 1)}^k}} = \left( {\begin{array}{\*{20}{c}}{ - r}\\m\end{array}} \right)
这其实就是性质3的特例。

性质6

x = y = 1,r = m + 1 可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{2m + 1}\\k\end{array}} \right)} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + k}\\k\end{array}} \right){2^{m - k}}}
左边就是杨辉三角一行中左边一半的和,所以可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + k}\\k\end{array}} \right){2^{ - k}}} {\rm{ = }}{2^m}

性质7

\left( {\begin{array}{\*{20}{c}}r\\m\end{array}} \right)\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right)\left( {\begin{array}{\*{20}{c}}{r - k}\\{m - k}\end{array}} \right)
这个公式可以形象理解为,从 r 个物品中取 m 个,再从这 m 个中取 k 个的方法数等于从 r 个物品中取 k 个,再从剩下的 r-k 个中取 m-k 个的方法数。证明的话直接用定义可证。

性质8

之前介绍了二项式系数,那么可以推广到任意 m 个未知数,它的展开式为
{({x_1} + {x_2} + \cdots + {x_m})^n} = \sum\limits_{\scriptstyle0 \le {a_1},{a_2}, \cdots ,{a_m} \le n\atop\scriptstyle{a_1} + {a_2} + \cdots + {a_m} = n} {\left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_1},{a_2}, \cdots ,{a_m}}\end{array}} \right)} {x_1}^{ {a_1}}{x_2}^{ {a_2}} \cdots {x_m}^{ {a_m}}
其中
\left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_1},{a_2}, \cdots ,{a_m}}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_2} + \cdots + {a_m}}\end{array}} \right) \cdots \left( {\begin{array}{\*{20}{c}}{ {a_{m - 1}} + {a_m}}\\{ {a_m}}\end{array}} \right)

性质9

范德蒙德卷积式:
\sum\limits_k {\left( {\begin{array}{\*{20}{c}}r\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{n - k}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{r + s}\\{m + n}\end{array}} \right)
很多公式都可以通过替换其中的一些变量推导得到:
\begin{array}{l}\sum\limits_k {\left( {\begin{array}{\*{20}{c}}l\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{n + k}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{l + s}\\{l - m + n}\end{array}} \right)\\\sum\limits_k {\left( {\begin{array}{\*{20}{c}}l\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}{s + k}\\n\end{array}} \right){( - 1)^k} = {( - 1)^{l + m}}\left( {\begin{array}{\*{20}{c}}{s - m}\\{n - l}\end{array}} \right)\\\sum\limits_{k \le l} {\left( {\begin{array}{\*{20}{c}}{l - k}\\m\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{k - n}\end{array}} \right){( - 1)^k} = {( - 1)^{l + m}}\left( {\begin{array}{\*{20}{c}}{s - m - 1}\\{l - m - n}\end{array}} \right)\\\sum\limits_{0 \le k \le l} {\left( {\begin{array}{\*{20}{c}}{l - k}\\m\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}{q + k}\\n\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{l + q + 1}\\{m + n + 1}\end{array}} \right)\end{array}

例题1

最后详细求解一道组合题,其他的题目就不介绍了,可以去看具体数学英文版第173页。

求下面式子的闭形式解:
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} ,n \ge m \ge 0

根据性质7,可以得到
\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right)
所以
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} = \sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right)}

\begin{array}{l}\sum\limits_{k \ge 0} {\left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)} = \sum\limits_{m - k \ge 0} {\left( {\begin{array}{\*{20}{c}}{n - (m - k)}\\{m - (m - k)}\end{array}} \right)} \\ = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{n - m + k}\\k\end{array}} \right)} \\ = \left( {\begin{array}{\*{20}{c}}{(n - m) + m + 1}\\m\end{array}} \right)\\ = \left( {\begin{array}{\*{20}{c}}{n + 1}\\m\end{array}} \right)\end{array}
所以
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} = \left( {\begin{array}{\*{20}{c}}{n + 1}\\m\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right) = \frac{ {n + 1}}{ {n + 1 - m}}

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
第一章 引论 1.1 组合数学研究的对象 1.2 组合问题典型实例 1.2.1 分派问题 1. 2.2 染色问题 1.2.3 幻方问题 1.2.4 36军官问题 1.2.5 中国邮路问题 习 题 第二章 排列与组合 2.1 两个基本计数原理 2.2 无重集的排列与组合 2.3 重集的排列与组合 2.4 排列生成算法 2.4.1 序数法 2.4.2 字典序法 2.4.3 轮转法 2.5 组合生成算法 .2.6 应用举例 习 题 第三章 容斥原理 3.1 引 言 3.2 容斥原理 3.3 几个重要公式 3.4 错位排列 3.5 有限制的排列 3.6 棋阵多项式 3.7 禁位排列 习 题 第四章 鸽巢原理 4.1 鸽巢原理 4. 2 鸽巢原理的推广形式 4. 3 ramsey数 4.4 ramsey数的性质 4.5 ramsey定理 习 题 第五章 母函数 5.1 母函数概念 5.2 幂级数型母函数 5.3 整数的拆分 5.4 ferrers图 5.5 指数型母函数 习 题 第六章 递归关系 6.1 引言 6.2 几个典型的递归关系.. 6.3 用母函数方法求解递归关系 6.4 常系数线性齐次递归关系的求解 6.5 常系数线性非齐次递归关系的求解 6.6 非常系数非线性递归关系的求解 6.7 差分表法 6.8 stirling数 习 题 第七章 polya定理 7.1 有限集的映射 7.2 群的基本概念 7.3 置换群 7.4 置换的奇偶性 7.5 置换群下的共轭类 7.6 burnside引理 7.7 polya定理 7.8 polya定理的母函数型式 7.9 不标号图的计数 习 题 第八章 图论基础 8.1 图的基本概念 8.2 同构图、完全图与二分图 8.3 通路、回路与图的连通性 8.4 euler图与hamilton图 8.5 割集与树 8.6 图的矩阵表示法 8.7 平面图、对偶图与色数 8.8 匹配理论 8.9 网络流 习 题 第九章 拉丁方与区组设计 9.1 引言 9.2 拉丁方 9.3 有限域 9.4 正交拉丁方的构造 9.5 完全区组设计 9.6 平衡不完全区组设计(bibd) 9.7 区组设计的构造 9.8 steiner三连系 9.9 hadamard矩阵 习 题 第十章 线性规划 10.1 lp问题引例 10.2 lp问题的一般形式 10.3 lp问题的标准型 10.4 可行域和最优可行解 10.5 单纯形法 10.6 单纯形表格法 10.7 两阶段法 10.8 对偶原理 10.9 对偶单纯形法 10.10 应用举例 习 题 第十一章 组合优化算法与计算的时间复杂度理论 11.1 dijkstra算法 11.2 floyd算法 11.3 kruskal算法 11.4 求最优树的破圈法和统观法 11.5 二分图中最大匹配与最佳匹配的算法 11.6 fleury算法 11.7 中国邮路问题及其算法 11.8 深度优先搜索法--dfs算法 11.9 项目网络与关键路径法 11.10 网络最大流算法 11.11 状态转移法 11.12 好算法、坏算法和np类问题 11.13 npc类问题 11.14 货郎问题的近似解 习 题... 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值