每日算法系列【LeetCode 319】灯泡开关

题目描述

初始时有 n 个灯泡关闭。 第 1 轮,你打开所有的灯泡。 第 2 轮,每两个灯泡你关闭一次。 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。第 i 轮,每 i 个灯泡切换一次开关。 对于第 n 轮,你只切换最后一个灯泡的开关。 找出 n 轮后有多少个亮着的灯泡。

示例1

        输入:
3
输出:
1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭]. 

你应该返回 1,因为只有一个灯泡还亮着。
      

题解

首先有 n 个灯泡,假设编号为 1n 。第 1 轮,所有编号是 1 的倍数的灯泡被开关了一次。第 2 轮,所有编号是 2 的倍数的灯泡被开关了一次。类推下去,第 i 轮,所有编号是 i 的倍数的灯泡被开关了一次。

综上,对于编号为 i 的灯泡来说,它最终被开关的次数取决于 i 有几个因数。如果有奇数个因数,那么它最后就是开着的,否则就是关着的。

那么我们有一个定理:如果一个正整数有奇数个因数,那么它一定是完全平方数

最浅显的证明就是,一个数 i 的因数按照从小到大排个序,首尾两两一对之积一定等于 i 。而如果因数只有奇数个,最中间一个因数 x 只会出现一次,那么 i = x^2

严格证明也不难,首先将 i 质因数分解为:

i = p_1^{c_1}p_2^{c_2}\cdots p_k^{c_k} \\

那么 i 的因数个数就是:

(c_1+1)(c_2+1)\cdots (c_k+1) \\

因为 i 的因数个数是奇数,所以任意 c_j + 1 必定是奇数,即任意 c_j 必定是偶数。

那么 i 就可以写作:

i = (p_1^{c_1/2}p_2^{c_2/2}\cdots p_k^{c_k/2})^2 \\

这就证明了 i 一定是一个完全平方数。

所以问题就转化为了1n 之间有多少个完全平方数。答案就是 \left\lfloor\sqrt{n}\right\rfloor

在具体实现的时候,为了防止出现浮点数误差(比如 \sqrt{9} 算出来是 2.9999 ,取整得到 2),我们可以计算 \left\lfloor\sqrt{n+0.5}\right\rfloor 的结果。

代码

c++

        class Solution {
public:
    int bulbSwitch(int n) {
        return sqrt(n+0.5);
    }
};

      

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值