Maximum width CodeForces - 1492C
题目大意:
就是要求一个递增的序列,满足S[p[i]]=t[i]。然后使得p[i]-p[i-1]最大。
分析
可以发现对于t字符串中的每个字符,在算与前一个字符所映射的值的差时,映射到后面要越靠后的位置越好。在算与后一个字符所映射的值得差时,映射到后面要越靠前的位置越好。
所以我们可以尝试去算出t中每个字符合法的最小的位置与最大的位置,假设我们要求的字符的位置为i,我们知道它的最小位置为d[i],它的最大位置为rd[i]。那么rd[i+1]-d[i]就有可能是答案,O(n)扫描一遍就好了。
现在问题就在于如何算t中每个字符的最小位置与最大位置。扫描两次,第一次从前往后扫描一次,就可以得出最小位置。第二次从后往前扫描,就可以得到最大位置。
AC代码:
#include <cstdlib>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<cstdio>
#include<string>
#include<string.h>
#include<list>
#include<queue>
#include<sstream>
#include<vector>
#include<set>
#include<map>
#include<deque>
#include<stack>
using namespace std;
#define debug(x) cout<<"###"<<x<<"###"<<endl;
const int Mod=1e4+7,INF=0x3f3f3f3f;
const double eps=1e-8;
typedef long long ll;
const int N=2e5+10;
int b[N],rb[N];
char s[N],t[N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
scanf("%s",s);
scanf("%s",t);
// debug(t+1);
int p1=-1,p2=0;
while(p2<m){
while(s[++p1]!=t[p2]);
b[p2]=p1;
p2++;
}
p1=n;p2=m-1;
while(p2>=0){
while(s[--p1]!=t[p2]);
rb[p2]=p1;
p2--;
}
int ans=0;
for(int i=1;i<m;i++){
ans=max(ans,rb[i]-b[i-1]);
}
cout<<ans<<endl;
}
想起lyd大佬的大概这么一句话:“读者在设计每个问题的算法时,要专注于整体框架,不妨假设细节部分的“小问题”已经处理完毕,争取把每个框架都转化成我们学过的模型。这样的话无论多么复杂的问题都迎刃而解了。”