杭电2199Can you solve this equation?(初试二分法)

50 篇文章 0 订阅
3 篇文章 0 订阅
本文介绍了一种通过二分查找法解决特定多项式方程的方法。该方程为8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6=Y,在区间[0,100]内寻找解。使用递增序列特性判断解的存在,并通过精确到小数点后四位的二分法求解。
摘要由CSDN通过智能技术生成

 

Can you solve this equation?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13000    Accepted Submission(s): 5822


Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 

Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 

Sample Input
  
  
2 100 -4
 

Sample Output
  
  
1.6152 No solution!
 

Author
Redow
 
#include<stdio.h>
#include<math.h>
	double fun(double x)
	{
		return 8*x*x*x*x+7*x*x*x+2*x*x+3*x+6;
	}
	int main()
	{
		int n;
		double y,l,r,mid;
		scanf("%d",&n);
		while(n--)
		{
			scanf("%lf",&y);
		l=0.0;
		r=100.0;
		if(y<fun(l)||y>fun(r))//因为其为递增序列则fun(l)为最小值,fun(r)为最大值 
		{
		printf("No solution!\n");
		continue;//停止while循环进行下一次while循环 
		}
		while(r-l>1e-10)//二分法模板:死记!!!!!! 
		{
			mid=(r+l)/2.0;
			if(fun(mid)<y)
			l=mid+1e-10;
			else
			r=mid-1e-10;
		}
		printf("%.4lf\n",mid);
		}
		return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值