论文记录2025

1、SimpleNet

SimpleNet 是一种用于检测和定位异常的简单且易于应用的神经网络。当前的方法主要采用无监督方式解决异常检测问题,即训练过程中只使用正常样本。

预训练的特征提取器 (Feature Extractor): 用于生成局部特征。

浅层特征适配器 (Feature Adapter): 用于将局部特征转换到目标领域。

异常特征生成器 (Anomaly Feature Generator): 通过向正常特征添加高斯噪声来伪造异常特征。它通过合成异常来训练模型,避免了对大量真实异常样本的依赖。

二元异常判别器 (Anomaly Discriminator): 用于区分异常特征和正常特征。

在推理过程中,异常特征生成器将被丢弃。我们的方法基于三个直觉。首先,将预训练的特征转换为面向目标的特征有助于避免域偏差。其次,在特征空间中生成合成异常更为有效,因为缺陷在图像空间中可能没有太多的共性。第三,简单的鉴别器效率高、实用。

图像异常检测与定位任务的目的是识别异常图像,定位异常子区域。目前的方法以无监督的方式解决这个问题,在训练过程中只使用正常样本。基于重建的方法、基于综合的方法和基于嵌入的方法是解决这一问题的三个主要趋势。

2、YOLO

目标检测

1、数据预处理---图像尺度变换

2、backbone---骨干网络特征提取

3、neck---颈部网络增强特征表达能力

4、head---头部网络进行模型预测---目标位置、分类、得分

YOLO系列的发展

2016 年发布的YOLOv2通过纳入批量归一化、锚框和维度集群改进了原始模型。

2018 年推出的YOLOv3使用更高效的骨干网络、多锚和空间金字塔池进一步增强了模型的性能。

YOLOv4 was released in 2020, introducing innovations like Mosaic data augmentation, a new anchor-free detection head, and a new loss function.

YOLOv5进一步提高了模型的性能,并增加了超参数优化、集成实验跟踪和自动导出为常用导出格式等新功能。

YOLOv6于2022年由美团开源,目前已用于该公司的许多自主配送机器人。

YOLOv7增加了额外的任务,如COCO关键点数据集的姿势估计。

YOLOv8 released in 2023 by Ultralytics. YOLOv8 introduced new features and improvements for enhanced performance, flexibility, and efficiency, supporting a full range of vision AI tasks.

YOLOv9 引入了可编程梯度信息(PGI)和广义高效层聚合网络(GELAN)等创新方法。

YOLOv10是由清华大学的研究人员使用该软件包创建的。 Ultralytics Python 软件包创建的。该版本通过引入端到端头(End-to-End head),消除了非最大抑制(NMS)要求,实现了实时目标检测的进步。

YOLO11 NEW: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks, including detection, segmentation, pose estimation, tracking, and classification, leverage capabilities across diverse AI applications and domains.

​yolov5和yolov8的区别
1、yolov5是anchor-based,yolov8是anchor-free
2、yolov5有自信度,yolov8没有,因为自信度是建议框与真实框的交集
3、yolov5有3个损失函数,回归(预测框和建议框的损失CIOU+FocalLoss)+分类(BECLoss)
4、yolov8有2个损失函数,回归(预测框和真实框的损失CIOU+DFL)+分类(BECLoss)
5、yolov5中标签shape是[N,5+n_cls],yolov8中标签shape是[N,4+n_cls]
6、yolov5是耦合头,分类和回归在一起;yolov8是解耦头,分类和回归分开

3、PSMNet

双目立体匹配,深度估计

Pyramid Stereo Matching Network是一篇2018发表在CVPR上的双目立体匹配论文。该网络利用空间金字塔池化和3D卷积来改进立体匹配的精度,尤其在处理遮挡区域和弱纹理区域的一致性方面。PSMNet能够产生高质量的深度估计,并且无需额外的后处理步骤,实现端到端的训练。

PSMNET通过SPP结构和3D CNN的应用在病态区域上取得了比之前网络更好的预测结果。但是该论文的推理时间较大的问题也限制了该网络较难应用在一些实时性较高的设备上。总体上,该网络推动了双目立体匹配网络的相关研究。

4、NeRF

三维重建

NeRF的目标:从任意角度渲染出清晰的场景图片。

NeRF 是在静态新视角合成任务上具有里程碑意义的方法。

NERF的实现: 输入一个点的位置和观察的角度,通过MLP输出一个颜色与占据概率。

新视角合成任务 (Novel View Synthesis) 指的是给定源图像 (Source Image) 及源姿态 (Source Pose),以及目标姿态 (Target Pose),渲染生成目标姿态对应的的图片 (Target Image)。新视角合成在 3D 重建、AR/VR 等领域有着广泛的应用。

5、3DGS

三维重建

3DGS目的:给你一个场景几个视角的图片,生成这个场景任意一个视角的图片。

3DGS是基于图像进行渲染和训练的。将大规模场景划分为若干较小的场景,分别进行重建,然后利用配准技术将这些小场景组合在一起。

3DGS输入:一个场景几个视角的图片 + 场景的初始化点云(雷达点、图片sfm生成点、也可随机初始化点云)

3DGS输出:任何一个视角的图片

PSNR:用于评估一幅图像与原始图像之间的相似度。PSNR的值越高,表示两幅图像之间的相似度越高,质量越好。

6、spann3r

三维重建

7、Depth-Anything-V2

单目深度估计

8、CodeFormer

图像修复

9、Segment Anything

10、SAM2

https://github.com/facebookresearch/sam2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值