1.解析解 & 数值解
解析解: (Analytical Solution),使用解析法得到的系统解的形式。解析解给出解的具体函数形式,通过解的表达式可以计算出任何时刻的值。是应用数学推导、演绎的方法得到的解;
注:解析法能够得到关于问题的一般性答案(微分方程的通解+特解)
数值解: (Numerical Solution),使用仿真法得到系统解的形式。数值解是在特定条件下通过近似计算得出来的;
注:仿真法的每一次运行只能得到在特定条件下的数值解
2.解析法 & 仿真法的比较
通俗的来说,解析法就是通过数学分析对一个系统建立数学模型从而对其进行研究,而仿真法是通过搭建仿真模型对系统进行结果的探寻。
采用仿真法研究系统时,为了掌握某一参数对系统性能的影响,需要在不同条件下反复试验才能得出结论,而且这个结论往往是不全面的。从这个方面说,解析法优于仿真法;
但是,使用解析法求解时,要求数学模型不能太复杂,阶次不能太高。需要尽可能简化模型,而模型的过度简化则可能丧失实际意义;
实际系统大多是非线性、分布参数或高阶的复杂系统,其数学模型无法用解析法求解。从这个方面说,仿真法优于解析法;
3.控制系统仿真的三要素:
- 系统
- 模型
- 计算机
4.控制系统建模
模型的重要性:控制系统的计算机仿真是以“数学模型”为基础的,系统模型至关重要,决定了仿真的成败;
建模方法
- 解析法:根据系统各变量所遵循的物理、化学基本定律,列写变量间的数学表达式,建立系统的数学模型。 牛顿运动定律、基尔霍夫定律、动力学定律
- 辨识法:对于复杂的控制系统,必须通过实验,利用系统辨识技术,得到数学模型。
- 综合法:解析法和辨识法相结合的一种建模方法。
5.仿真实例:
质量-弹簧-阻尼系统仿真
外力r(t)是系统的输入量,质量块的位移y(t)是系统的输出量。当质量m=1,弹簧的刚性系数k=4时,试确定为了使系统在阶跃响应时不发生振荡,阻尼系数 f 的取值范围。
质量-弹簧-阻尼系统仿真
根据牛顿运动定律,描述质量-弹簧-阻尼系统的数学模型如下:
也可用状态空间方程作为系统的数学模型:
将数学模型转化为仿真模型:离散化,将连续状态空间方程转化为离散状态空间方程,便于计算机迭代求解;
编写仿真程序:
在此使用Simulink进行仿真研究。使用较为简单的传递函数形式:
对于 f∈[2,5],反复进行试验,可以得出f≈3.5为临界值。当f >3.5时,系统不会出现振荡现象