机器学习之线性回归算法

 

 

 

Python实现

import numpy

def loadDataSet(fileName):
    numFeat=len(open(fileName).readline().split('\t'))-1
    dataMat=[];labelMat=[]
    fr=open(fileName)
    for line in fr.readlines():
        lineArr=[]
        curLine=line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[i]))
    return dataMat,labelMat

def standRegres(xArr,yArr):
    xMat=mat(xArr)
    yMat=mat(yArr).T
    xTx=xMat.T*xMat
    if linalg.det(xTx)==0:
        print("This matrix is singular,cannot do inverse")
        return 
    ws=xTx.I*(xMat.T*yMat)
    return ws

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值