因子和与因子个数的应用(一)

Divisors(poj 2992)

题意:求组合数C(n, k)的约数的个数 (0 ≤ k ≤ n ≤ 431)

输入:输入数据有多组,每组数据占一行,每行输入两个整数,即n和k(0<=k<=n<=431);

输出:对应每组输入数据输出占一行,输出C(n,k)约数的个数。

Sample Input
5 1
6 3
10 4
Sample Output
2
6
16

——>>3个公式:

  1、n!中含素数p的个数为n/p + n/p^2 + n/p^3 + ...(到0停)程序中通过cal函数实现

  2、C(n, k) = n! / (n-k)! / k!

  3、n = p1^a1*p2^a2*...*pk^ak约数的个数为(a1+1)(a2+1)...(ak+1)


代码如下:

#include<cstdio>
#include<iostream>
#include<cstring>
#define MAXN 441
using namespace std;
int prime[MAXN],nprime;
bool isprime[MAXN];
void make_prime()///素数表
{
    int i,j;
    nprime=0;
    memset(isprime,1,sizeof(isprime));
    isprime[1]=0;
    for(i=2;i<=MAXN;i++)
    {
        if(isprime[i])
        {
            nprime++;
            prime[nprime]=i;
            for(j=i*i;j<=MAXN;j+=i)
                isprime[j]=0;
         }
    }
}
long long cal(int n,int p)///n!含素数p的个数,递归求解
{
    if(n<p)
        return 0;
    return (n/p+cal(n/p,p));
}
int main()
{
    int n;
    int k,i;
    make_prime();
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        long long sum=1;
        for(i=1;i<nprime;i++)
           sum*=(cal(n,prime[i])-cal(n-k,prime[i])-cal(k,prime[i])+1);
        printf("%lld\n",sum);
    }
    return 0;
}

Sumdiv(poj 1845)

大致题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

 

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

 

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2:A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

 

(2)若n为偶数,一共有奇数项,则:

  1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

 

4:反复平方法计算幂次式p^n

   这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

   以p=2,n=8为例

   常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

   这样做的要做8次乘法

 

   而反复平方法则不同,

   定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

   n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

   n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法

#include<cstdio>
#include<iostream>
#include<cstring>
#define mod 9901
#define MAXN 10000
using namespace std;
long long power(long long p,long long n)///反复平方法求 (p^n)%mod 
{
    long long sq=1;
    while(n>0)
    {
        if(n&1)
            sq=(sq*p)%mod;
        n>>=1;
        p=(p*p)%mod;
    }
    return sq;
}
long long sum(long long p,long long n)///递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod 
{
    if(n==0)
        return 1;
    if(n&1)///奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
        return (sum(p,n/2)*(1+power(p,n/2+1)))%mod;
    else///偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)
        return (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))%mod;
}
int main()
{
    int A,B;
    int p[MAXN];///A的分解式,p[i]^n[i]
    int n[MAXN];
    while(scanf("%d%d",&A,&B)!=EOF)
    {
       int i,k=1;
       for(i=2;i*i<A;i++)
            if(A%i==0)
       {
           p[k]=i;
           n[k]=0;
           while(A%i==0)
           {
               A/=i;
               n[k]++;
           }
           k++;
       }
       if(A>1)
       {
          p[k]=A;
          n[k]=1;
       }
       int ans=1;
       for(i=1;i<=k;i++)
        ans=ans*(sum(p[i],n[i]*B)%mod)%mod;
       cout<<ans<<endl;
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值