巴什博弈:只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果
n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。那么这个时候只要n%(m+1)!=0,先取者一定获胜。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
分析此类问题主要放法是:P/N分析:
P点:即必败点,某玩家位于此点,只要对方无失误,则必败;
N点:即必胜点,某玩家位于此点,只要自己无失误,则必胜。
三个定理:
巴什博弈的一个最重要的特征就是只有一堆。然后就在其中改,要么在范围内不规定个数,要么就规定只能取几个,再要么就倒过来,毕竟是最简单的博弈,代码相对而言较短;
例题一:取石子(一)
-
描述
-
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?
-
输入
-
第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。
输出
- 对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出) 样例输入
-
2 1000 1 1 100
样例输出
-
Lose Win
-
第一行是一个正整数n表示有n组测试数据
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int t;
int n,m;
cin>>t;
while(t--)
{
cin>>n>>m;
if(n%(m+1)==0)
cout<<"Lose"<<endl;
else
cout<<"Win"<<endl;
}
return 0;
}
例题二 HDU 2149
Public Sale
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8316 Accepted Submission(s): 4974
要种田得有田才行,Lele听说街上正在举行一场别开生面的拍卖会,拍卖的物品正好就是一块20亩的田地。于是,Lele带上他的全部积蓄,冲往拍卖会。
后来发现,整个拍卖会只有Lele和他的死对头Yueyue。
通过打听,Lele知道这场拍卖的规则是这样的:刚开始底价为0,两个人轮流开始加价,不过每次加价的幅度要在1~N之间,当价格大于或等于田地的成本价 M 时,主办方就把这块田地卖给这次叫价的人。
Lele和Yueyue虽然考试不行,但是对拍卖却十分精通,而且他们两个人都十分想得到这块田地。所以他们每次都是选对自己最有利的方式进行加价。
由于Lele字典序比Yueyue靠前,所以每次都是由Lele先开始加价,请问,第一次加价的时候,
Lele要出多少才能保证自己买得到这块地呢?
每组测试包含两个整数M和N(含义见题目描述,0<N,M<1100)
如果Lele在第一次无论如何出价都无法买到这块土地,就输出"none"。
4 2 3 2 3 5
1 none 3 4 5
AC代码
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int n,m;
while(scanf("%d%d",&m,&n)!=EOF)
{
if(m%(n+1)==0)
cout<<"none";
else
{
if(m%(n+1))
cout<<m%(n+1);
if(n>=m)
{
for(int i=m+1;i<=n;i++)///初始化条件,判断是否小于n,是否进入循环体
cout<<" "<<i;
}
}
cout<<endl;
}
return 0;
}