巴什博弈:取石子游戏

本文介绍了巴什博弈,一种两人轮流取石子的游戏。分析了在不同石子数量下,如何通过策略决定胜负。当石子数能被(M+1)整除时,先手者必败;反之,先手者必胜。同时探讨了如果最后取光石子者输的变种规则,得出新的胜负策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关注下方公众号,分享硬核知识

作者 | 小K

出品 | 公众号:小K算法 (ID:xiaok365)

01

故事起源

有一堆石子共N颗,小K和小A轮流取,每次最少取1颗,最多取M颗,最后一次取光石子的获胜。
那么小K应该采取怎样的策略尽可能获胜呢?

02

分析

如果没有取的数量的限制,那就可以一次取完所有的,所以先取的人必胜。

但游戏的规则有限制条件,最少1颗,最多M颗,所以在这种条件下应该采取什么策略,我们继续分析。

03

小规模场景

先考虑一个简单场景,假设只有8颗石子,最少取1颗,最多取3颗。

3.1

剩下小于等于3颗

如果在进行若干轮之后,剩下的石子数量小于等于3,那该轮的人一定必胜。不论是剩1颗,2颗,还是3颗,他都可以一次取走所有的。

为描述方便,设f[x]表示有x颗石子,先取的人的输赢情况。

  • f[x]=1表示必胜

  • f[x]=0表示必败

则根据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值