机器学习第六天-线性代数02

周六终于订婚完成了,周日在忙新房装修,一晃两天没有学习,得赶紧学习,大家一起加油。路虽远兴则将至。

一、矩阵

1.矩阵的秩

  • 在m*n阶矩阵A中,任取k行k列,不改变这k²个元素在A中的次序,得到k阶方阵,称为矩阵A的k阶子式。
  • 设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么,D称为矩阵A的最高阶非零子式,r称为矩阵A的秩,记作R(A)=r。
    • n*n的可逆矩阵,秩为n
    • 可逆矩阵又称满秩矩阵
    • 矩阵的秩等于它行(列)向量组的秩
  • 秩与线性方程组的解之间的关系

    • 对于n元线性方程组Ax=b,
      • 无解的充要条件是R(A)<R(A,b)
      • 有唯一解的充要条件是R(A)=R(A,b)=n
      • 有无限多解的充要条件是R(A)=R(A,b)<n
    • 矩阵的应用

2.范数

  • 用于衡量一个向量的大小,Lp范数的定义如下

3.对角矩阵

  • 对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。
    • (1)对角矩阵如:
    • (2)对角矩阵可以记作:A=diag(λ1,λ2,······,λn)。
    • (3)当λ1=λ2=······=λn=a时,对角矩阵

4.矩阵的主成分分解(PCA)

  •  将矩阵分解成一组特征向量和特征值。
  • PCA常用于特征提取
    • 方阵A的特征向量是指与A相乘后相当于对该向量进行缩放的非零向量v:
      • Av=λv
    • 标量λ被称为这个特征向量对应的特征值。

5.向量的内积/点积

  • 点积有两种定义方式:代数方式和几何方式。通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。
  • 代数定义:

    •         
  • 几何定义:

  • 标量投影:

 6.向量正交

正交是线性代数的概念,是垂直这一直观概念的推广。作为一个形容词,只有在一个确定的内积空间中才有意义。若内积空间中两向量的内积为0,则称它们是正交的。如果能够定义向量间的夹角,则正交可以直观的理解为垂直。

7.向量外积

8.正交矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值