视频:4天学会python机器学习与量化交易
平台:米筐
4天学会python机器学习与量化交易,肯定是不可能的,最多入个门。
学习原因:
1,讲在线策略,免去本地搭建环境,下载数据等琐事。
2,主要讲A股交易,和有的量化资料不一样(讲期权),有实用价值。
3,讲的比较简单,适合入门。
2020.2.12 开始学习,之前没学过,看看要多久看完并学会,立个flag。
p6 获取板块、交易行情数据
RQData API文档:这里
获取板块、交易行情数据
1,获取股票
def init(context):
context.s1 = '000001.XSHE'
#获取计算机通信行业股票
context.stock_list = industry('C39')
#获取能源板块股票
context.sector_list = sector('Energy')
#获取指数成分股股票,如沪深300指数股票 (相当于获取股票池)
context.index_list = index_components('000300.XSHG')
2,获取价格
2.1 收盘价格 history_bars
这里指获取获取该股票某一天前面5天的收盘价格
def handle_bar(context,bar_dict):
close = history_bars(context.s1, 5, '1d', 'close')
logger.info(close)
结果:
2016-09-28 INFO [9.16 9.15 9.04 9.06 9.05]
2016-09-29 INFO [9.15 9.04 9.06 9.05 9.06]
2016-09-30 INFO [9.04 9.06 9.05 9.06 9.07]
2016-09-30 WARN 订单被拒单: [600397.XSHG] 已涨停。
2016-09-30 WARN 订单创建失败: 下单量为0
2016-09-30 WARN 订单创建失败: 下单量为0
其中,[9.16 9.15 9.04 9.06 9.05]
,9.05(最右边的)为9.28号的价格。close的类型为<class 'numpy.ndarray'>
。
2.2 获取多个指标
变成2维数据
def handle_bar(context,bar_dict):
#获取前面5天收盘价
close = h