【Leetcode】300. 最长递增子序列

本文介绍了如何解决LeetCode上的300题——找到整数数组中最长严格递增子序列的长度。通过两种方法解决:1) 简单动态规划,时间复杂度O(n^2);2) 优化动态规划,结合贪心策略和二分查找,降低时间复杂度。并提供了相应的JavaScript实现代码。
摘要由CSDN通过智能技术生成

题目链接:LIS

题目描述:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

思路有二:

1、简单动态规划 O(n^2)

dp[i]表示以nums[i]结尾的LIS的长度,必须包含nums[i]。

那么状态转移方程就是dp[i]=max(dp[j])+1    (nums[i]>nums[j],0<=j<i)

边界条件是dp[0]=1

js代码如下:

var lengthOfLIS = function(nums) {
    const length=nums.length;
    let dp=new Array(length);
    dp[0]=1;
    let max=1;
    for(let i=1;i<length;i++){
        dp[i]=1;
        for(let j=0;j<i;j++){
            if(nums[i]>nums[j]){
                dp[i]=Math.max(dp[i],dp[j]+1);
            }
        }
        max=Math.max(dp[i],max);
    }
    return max;
};

2、优化动态规划:贪心+二分

因为要求的是最长的递增子序列,那么可以贪心地认为序列递增的幅度是最小的。

dp[i]表示长度为i的LIS的末尾元素的最小值。dp中有效元素的个数就是最终所求。

// 用dp[i]表示长度为i的LIS的末尾元素的最小值。即dp[1]表示长度为1的LIS的最小值,其实就是nums的最小值。dp[2]表示长度为2的LIS的末尾元素的最小值,就是nums中所有长度为2的递增子序列中第二个元素最小的元素。。。。

// 所以对于当前dp中的最后一个有效元素,dp[len],如果nums[i]>dp[len],那么nums[i]可以直接插入dp。如果是小于的话,就需要在dp中,用二分找到第一个大于nums[i]的进行替换更新。

js代码如下:

var lengthOfLIS = function(nums){
    const length=nums.length;
    let dp=new Array(length+1);
    let index=1;
    dp[1]=nums[0];
    for(let i=1;i<length;i++){
        if(nums[i]>dp[index]){
            dp[++index]=nums[i];
        }else{
            let l=1,r=index;
            while(l<=r){
                let mid=l+((r-l)>>1);
                if(dp[mid]<nums[i]){
                    l=mid+1;
                }else{
                    r=mid-1;
                }     
            }
            dp[l]=nums[i];
        }
        console.log(dp);
    }
    return index;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值