题目链接:LIS
题目描述:
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
思路有二:
1、简单动态规划 O(n^2)
dp[i]表示以nums[i]结尾的LIS的长度,必须包含nums[i]。
那么状态转移方程就是dp[i]=max(dp[j])+1 (nums[i]>nums[j],0<=j<i)
边界条件是dp[0]=1
js代码如下:
var lengthOfLIS = function(nums) {
const length=nums.length;
let dp=new Array(length);
dp[0]=1;
let max=1;
for(let i=1;i<length;i++){
dp[i]=1;
for(let j=0;j<i;j++){
if(nums[i]>nums[j]){
dp[i]=Math.max(dp[i],dp[j]+1);
}
}
max=Math.max(dp[i],max);
}
return max;
};
2、优化动态规划:贪心+二分
因为要求的是最长的递增子序列,那么可以贪心地认为序列递增的幅度是最小的。
dp[i]表示长度为i的LIS的末尾元素的最小值。dp中有效元素的个数就是最终所求。
// 用dp[i]表示长度为i的LIS的末尾元素的最小值。即dp[1]表示长度为1的LIS的最小值,其实就是nums的最小值。dp[2]表示长度为2的LIS的末尾元素的最小值,就是nums中所有长度为2的递增子序列中第二个元素最小的元素。。。。
// 所以对于当前dp中的最后一个有效元素,dp[len],如果nums[i]>dp[len],那么nums[i]可以直接插入dp。如果是小于的话,就需要在dp中,用二分找到第一个大于nums[i]的进行替换更新。
js代码如下:
var lengthOfLIS = function(nums){
const length=nums.length;
let dp=new Array(length+1);
let index=1;
dp[1]=nums[0];
for(let i=1;i<length;i++){
if(nums[i]>dp[index]){
dp[++index]=nums[i];
}else{
let l=1,r=index;
while(l<=r){
let mid=l+((r-l)>>1);
if(dp[mid]<nums[i]){
l=mid+1;
}else{
r=mid-1;
}
}
dp[l]=nums[i];
}
console.log(dp);
}
return index;
}