每日一题 P2656 采蘑菇 强连通缩点 树形dp

每日一题 P2656 采蘑菇 强连通缩点 树形dp


蓝题,思路不算很难,题意可知强连通块上每条边的值都可一压榨干净,其他边最多走一次。因此先缩点,连通块内所有边的值先算出来,然后再重新构图,这时候是个无环图,跑一边动态规划输出最大值即可。

#include <bits/stdc++.h>
#define int long long
#define endl "\n"
#define MAXN 1000005
using namespace std;
struct EDGE
{
    int to,w,next;
    double co;
} edge[MAXN];
int head[MAXN],ptr;
void add_edge(int u,int v,int w,double co)
{
    edge[++ptr].to=v;
    edge[ptr].w=w;
    edge[ptr].co=co;
    edge[ptr].next=head[u];
    head[u]=ptr;
}
int n,m,s;
int belong[MAXN],scc;
int val[MAXN];
int dfn[MAXN],low[MAXN];
int idx;
bool in_stk[MAXN];
stack<int> stk;
void tarjan(int now)
{
    dfn[now]=low[now]=++idx;
    stk.push(now);
    in_stk[now]=1;
    for(int p=head[now]; p; p=edge[p].next)
    {
        int to=edge[p].to;
        if(!dfn[to])
        {
            tarjan(to);
            low[now]=min(low[now],low[to]);
        }
        else if(in_stk[to])
            low[now]=min(low[now],dfn[to]);
    }
    if(dfn[now]==low[now])
    {
        int temp;
        scc++;
        do
        {
            temp=stk.top();
            belong[temp]=scc;
            in_stk[temp]=0;
            stk.pop();
        }
        while(temp!=now);
    }
}
struct E
{
    int u,v,w;double co;
}e[MAXN];
int get(int p)
{
    int ret=0;
    int res=e[p].w;
    double co=e[p].co;
    while(res)
        ret+=res,res*=co;
    return ret;
}
void dfs(int now)
{
    for(int p=head[now];p;p=edge[p].next)
    {
        int to=edge[p].to,w=edge[p].w;
        val[to]=max(val[to],val[now]+w);
        dfs(to);
    }
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        int u,v,w;double co;
        cin>>u>>v>>w>>co;
        add_edge(u,v,w,co);
        e[i].u=u,e[i].v=v,e[i].w=w,e[i].co=co;
    }
    cin>>s;
    tarjan(s);
    ptr=0;
    memset(head,0,sizeof(head));
    memset(edge,0,sizeof(edge));
    for(int i=1;i<=m;i++)
    {
        int u=belong[e[i].u],v=belong[e[i].v],w=e[i].w;
        if(u==v)
        {
            val[u]+=get(i);
            continue;
        }
        add_edge(u,v,w,0);
    }
    dfs(belong[s]);
    int ans=0;
    for(int i=1;i<=scc;i++)
        ans=max(ans,val[i]);
    cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值