蘑菇阵——动态规划

现在有两个好友A和B,住在一片长有蘑菇的由n*m个方格组成的草地,A在(1,1),B在(n,m)。现在A想要拜访B,由于她只想去B的家,所以每次她只会走(i,j+1)或(i+1,j)这样的路线,在草地上有k个蘑菇种在格子里(多个蘑菇可能在同一方格),问:A如果每一步随机选择的话(若她在边界上,则只有一种选择),那么她不碰到蘑菇走到B的家的概率是多少?

输入描述:
第一行N,M,K(1 ≤ N,M ≤ 20, k ≤ 100),N,M为草地大小,接下来K行,每行两个整数x,y,代表(x,y)处有一个蘑菇。
输出一行,代表所求概率(保留到2位小数)。
思路:生成一个n*m的地图,首先将有蘑菇的该点设置为-1,表示不能碰到蘑菇,那么从<1, 1>出发,可达<1, 1>的概率就是map[1][1] = 1,对于一般情况,map[i][j] = (map[i][j-1] + map[i-1][j]) / 2,其中,如果map[i][j]、 map[i][j-1]、 map[i-1][j]如果分别为-1, 则不计算对应部分,不过,对于i == n 和j == m的情况下有所不同,因为此时只有一种移动方式,所以应该在多加上map[i][j-1]/2和map[i-1][j]/2,由此,map[n][m]就是达到终点的概率。
代码如下:

import java.util.Scanner;
public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int n = sc.nextInt();
            int m = sc.nextInt();
            int k = sc.nextInt();
            int[][] xy = new int[k][2];
            for(int i=0;i<k;i++){
                xy[i][0]=sc.nextInt();
                xy[i][1]=sc.nextInt();
            }
            System.out.println(String.format("%.2f",solve(n,m,xy)));
        }
    }
    public static double solve(int n,int m,int[][] xy){
        double[][] map = new double[n+1][m+1];
        for(int[] a:xy){
            map[a[0]][a[1]]=-1;
        }
        map[1][1]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(map[i][j]!=-1){
                    if(map[i-1][j]!=-1){
                        map[i][j] += (j==m?map[i-1][j]:map[i-1][j]/2);
                    }
                    if(map[i][j-1]!=-1){
                        map[i][j] += (i==n?map[i][j-1]:map[i][j-1]/2);
                    }
                }
            } 
        }
        return map[n][m];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋丹尼尔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值