题意:给定一个序列,对于每一个元素ai,求一个xi使得phi(xi)>=ai,最后将xi求和。
分析:由欧拉函数性质可知,当x为素数时,phi(x) = x-1,即x-1>=ai,x>=ai+1。于是只要找到大于等于ai的第一个素数即可。且在任意两个相邻质数x,x+1之间的合数y,有phi(y)<phi(x)<phi(x+1),所以答案不可能是一个合数,就算phi(y)>=ai也应该选较小的phi(x).
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long eul[10010];
long long prim[1000010];//存素数
int check[1000010]; //为0代表是素数
int a[10010];
int N;
//欧拉函数打表
void Eul(){
eul[1] = 1;
for(long long i = 2; i<10010; i++){
eul[i] = i;
}
for(long long i = 2; i<10010; i++){
if(eul[i] == i){
for(long long j = i; j<10010; j+=i){
eul[j] = eul[j]/i*(i-1);
}
}
}
}
//素数打表
void Prim(){
check[0] = check[1] = 1;
int tot = 0;
for(int i = 2; i<1000010; i++){
if(!check[i]){
prim[tot++] = i;
}
for(int j = 0; j<tot; j++){
if(i*prim[j]>1000010) break;
check[i*prim[j]] = 1;
if(i%prim[j] == 0) break;
}
}
}
int main(){
//init();
Prim();
/*for(int i = 0; i<=20; i++){
cout<<check[i]<<endl;
}*/
int T;
scanf("%d", &T);
for(int t = 1; t<=T; t++){
long long res = 0;
scanf("%d", &N);
for(int i = 1; i<=N; i++){
scanf("%d", &a[i]);
}
for(int i = 1; i<=N; i++){
for(int j = a[i]+1; ; j++){
//cout<<check[j]<<endl;
if(check[j] == 0){
res+=(long long)j;
break;
}
}
}
printf("Case %d: %lld Xukha\n", t, res);
}
return 0;
}