LightOJ - 1370(欧拉函数)

题意:给定一个序列,对于每一个元素ai,求一个xi使得phi(xi)>=ai,最后将xi求和。

分析:由欧拉函数性质可知,当x为素数时,phi(x) = x-1,即x-1>=ai,x>=ai+1。于是只要找到大于等于ai的第一个素数即可。且在任意两个相邻质数x,x+1之间的合数y,有phi(y)<phi(x)<phi(x+1),所以答案不可能是一个合数,就算phi(y)>=ai也应该选较小的phi(x).

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

long long eul[10010];
long long prim[1000010];//存素数
int check[1000010]; //为0代表是素数
int a[10010];
int N;

//欧拉函数打表
void Eul(){
    eul[1] = 1;
    for(long long i = 2; i<10010; i++){
        eul[i] = i;
    }
    for(long long i = 2; i<10010; i++){
        if(eul[i] == i){
            for(long long j = i; j<10010; j+=i){
                eul[j] = eul[j]/i*(i-1);
            }
        }
    }
}

//素数打表
void Prim(){
    check[0] = check[1] = 1;
    int tot = 0;
    for(int i = 2; i<1000010; i++){
        if(!check[i]){
            prim[tot++] = i;
        }
        for(int j = 0; j<tot; j++){
            if(i*prim[j]>1000010) break;
            check[i*prim[j]] = 1;
            if(i%prim[j] == 0) break;
        }
    }
}

int main(){
    //init();
    Prim();
    /*for(int i = 0; i<=20; i++){
        cout<<check[i]<<endl;
    }*/

    int T;
    scanf("%d", &T);
    for(int t = 1; t<=T; t++){
        long long res = 0;
        scanf("%d", &N);
        for(int i = 1; i<=N; i++){
            scanf("%d", &a[i]);
        }
        for(int i = 1; i<=N; i++){
            for(int j = a[i]+1; ; j++){
                //cout<<check[j]<<endl;
                if(check[j] == 0){
                    res+=(long long)j;
                    break;
                }
            }
        }
        printf("Case %d: %lld Xukha\n", t, res);
    }

    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值