【数值分析】误差

误差

1. 误差的类型

  • 实际问题转化为数学模型时产生的误差称为模型误差
  • 在数学模型中观察数据产生的误差叫观察误差
    以上两种误差我们在数值分析中不讨论,只研究求解数学模型产生的误差
  • 截断误差(方法误差):在设计算法时近似处理寻求一些简化
  • 舍入误差:计算机的字长是有限的,每一步运算需要四舍五入
    计算机的浮点数系,如果采用 β \beta β进制,则浮点数表示为 x = ± ( d 1 β + d 2 β 2 + . . . + d t β t ) × β e x=\pm(\frac{d_1}{\beta}+\frac{d_2}{\beta^2}+...+\frac{d_t}{\beta^t})\times\beta^e x=±(βd1+β2d2+...+βtdt)×βe
    其中 d 1 , d 2 , . . . , d t d_1,d_2,...,d_t d1,d2,...,dt为整数,且$0\le d_i\le \beta-1 $ ( i = 1 , 2 , . . . , t ) (i=1,2,...,t) (i=1,2,...,t)
    β \beta β为浮点数的基底,一般取 β = 10 , 2 , 16 \beta=10,2,16 β=10,2,16,自然数t为尾数字长,整数e为浮点数的阶码,有固定的下限L和上限U,即 L ≤ e ≤ U L \le e \le U LeU,L,U具体数值由计算机规定
    可以验证:F中共有 2 ( β − 1 ) β t − 1 ( U − L + 1 ) + 1 2(\beta-1) \beta^{t-1}(U-L+1)+1 2(β1)βt1(UL+1)+1
    个规格化的浮点数
    m = β L − 1 , M = β U ( 1 − β − t ) m=\beta^{L-1},M=\beta^U(1-\beta^{-t}) m=βL1,M=βU(1βt),若 f ∈ F , f ≠ 0 f\in F,f \neq0 fF,f=0,则 m ≤ ∣ f ∣ ≤ M m \le |f| \le M mfM
    注意:浮点数并不充满整个区间 [ M , m ] [M,m] [M,m] [ − M , − m ] [-M,-m] [M,m],且分布不等距
    F是一个有限集,不可能把区间内所有实数都表示出来,由此便产生舍入误差

2. 误差与误差限

  • 误差:设 x x x是精确值, x ∗ x^* x是他的一个近似值,称 e = x − x ∗ e=x-x^* e=xx
    是近似值 x x x的绝对误差,有量纲可正可负
  • 误差限: ∣ x − x ∗ ∣ ≤ ϵ |x-x^*|\le \epsilon xxϵ称是近似值 x ∗ x^* x的误差限, x x x可表示为 x = x ± ϵ x=x\pm \epsilon x=x±ϵ

3.相对误差与相对误差限

  • 相对误差 e r = e x = x − x ∗ x ≅ x − x ∗ x ∗ = e x ∗ e_r=\frac{e}{x}=\frac{x-x^*}{x}\cong\frac{x-x^*}{x^*}=\frac{e}{x^*} er=xe=xxxxxx=xe
  • 相对误差限 ∣ e r ∣ ≤ ϵ r |e_r|\le \epsilon_r erϵr,即 ∣ x − x ∗ ∣ ∣ x ∗ ∣ ≤ ϵ ∣ x ∗ ∣ ≤ ϵ r \frac{|x-x^*|}{|x^*|}\le \frac{\epsilon}{|x^*|}\le \epsilon_r xxxxϵϵr

4.有效数字

如果近似值 x ∗ x^* x的误差限是某一位的半个单位,该位到 x ∗ x^* x的第一位非零数字共有n位,则称 x ∗ x^* x有n位有效数字
例如对10进制数: ( X n ) 10 = ± ( a 1 10 + a 2 1 0 2 + . . . + a n 1 0 n ) × 1 0 m (X_n)_{10}=\pm(\frac{a_1}{10}+\frac{a_2}{10^2}+...+\frac{a_n}{10^n})\times 10^m (Xn)10=±(10a1+102a2+...+10nan)×10m
其中 a 1 a_1 a1是1到9的数字, a 2 , . . . , a n a_2,...,a_n a2,...,an是0到9的数字,则误差界为; ∣ X − X ∗ ∣ ≤ ϵ = 1 2 × 1 0 m × 1 1 0 n = 1 2 × 1 0 m − n |X-X^*|\le \epsilon=\frac{1}{2}\times10^m\times\frac{1}{10^n}=\frac{1}{2}\times10^{m-n} XXϵ=21×10m×10n1=21×10mn

5.有效数字与相对误差限的关系

定理1:设近似值 x ∗ = ± 0. a 1 a 2 . . . a n × 1 0 m x^*=\pm0.a_1a_2...a_n\times10^m x=±0.a1a2...an×10m有n位有效数字,则其相对误差限为: ∣ x − x ∗ ∣ ∣ x ∣ ≤ 1 2 a 1 × 1 0 − ( n − 1 ) \frac{|x-x^*|}{|x|}\le\frac{1}{2a_1}\times10^{-(n-1)} xxx2a11×10(n1)
定理2:设近似值 x ∗ = ± 0. a 1 a 2 . . . a n × 1 0 m x^*=\pm0.a_1a_2...a_n\times10^m x=±0.a1a2...an×10m的相对误差限不大于 1 2 ( a 1 + 1 ) × 1 0 − ( n − 1 ) \frac{1}{2(a_1+1)} \times10^{-(n-1)} 2(a1+1)1×10(n1)则他至少有n位有效数字

6.和差积商的绝对误差限

  • ϵ ( x ∗ + y ∗ ) = ϵ ( x ∗ ) + ϵ ( y ∗ ) \epsilon(x^*+y^*)=\epsilon(x^*)+\epsilon(y^*) ϵ(x+y)=ϵ(x)+ϵ(y)
  • ϵ ( x ∗ − y ∗ ) = ϵ ( x ∗ ) + ϵ ( y ∗ ) \epsilon(x^*-y^*)=\epsilon(x^*)+\epsilon(y^*) ϵ(xy)=ϵ(x)+ϵ(y)
  • ϵ ( x ∗ ⋅ y ∗ ) ≈ ϵ ( x ∗ ) ⋅ ∣ y ∗ ∣ + ϵ ( y ∗ ) ⋅ ∣ x ∗ ∣ \epsilon(x^*\cdot y^*)\approx \epsilon(x^*)\cdot |y^*|+\epsilon(y^*)\cdot |x^*| ϵ(xy)ϵ(x)y+ϵ(y)x
  • ϵ ( x ∗ y ∗ ) ≈ ϵ ( x ∗ ) ⋅ ∣ y ∗ ∣ + ϵ ( y ∗ ) ⋅ ∣ x ∗ ∣ ∣ y ∗ ∣ 2 \epsilon(\frac{x^*}{y^*})\approx\frac{\epsilon(x^*)\cdot|y^*|+\epsilon(y^*)\cdot|x^*|}{|y^*|^2} ϵ(yx)y2ϵ(x)y+ϵ(y)x

7.函数的误差限

  • 一元函数:设 f ( x ) f(x) f(x)是一元函数, x x x的近似值为 x ∗ x^* x,以 f ( x ∗ ) f(x^*) f(x)近似 f ( x ) f(x) f(x)
    则函数的误差限为 ϵ ( f ( x ∗ ) ) ≈ ∣ f ′ ( x ∗ ) ∣ ⋅ ϵ ( x ∗ ) \epsilon(f(x^*))\approx|f'(x^*)|\cdot \epsilon(x^*) ϵ(f(x))f(x)ϵ(x)
  • 多元函数:设 A = f ( x 1 , x 2 , . . . , x n ) , x 1 , x 2 , . . . , x n A=f(x_1,x_2,...,x_n),x_1,x_2,...,x_n A=f(x1,x2,...,xn),x1,x2,...,xn的近似值是 x 1 ∗ , x 2 ∗ , . . . , x n ∗ x_1^*,x_2^*,...,x_n^* x1,x2,...,xn,则A的近似值 A ∗ = f ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) A^*=f(x_1^*,x_2^*,...,x_n^*) A=f(x1,x2,...,xn),则函数误差限为 ϵ ( A ∗ ) ≈ ∑ k = 1 n ∣ ( ∂ f ∂ x k ) ∗ ∣ ⋅ ϵ ( x k ∗ ) \epsilon(A^*)\approx \sum_{k=1}^n|( \frac{\partial f}{\partial x_k} )^*|\cdot\epsilon(x^*_k) ϵ(A)k=1n(xkf)ϵ(xk)
    相对误差限:
    ϵ r ( A ∗ ) = ϵ ( A ∗ ) A ∗ ≈ ∑ k = 1 n ∣ ( ∂ f ∂ x k ) ∗ ∣ ⋅ ϵ ( x k ∗ ) ∣ A ∗ ∣ \epsilon_r(A^*)=\frac{\epsilon(A^*)}{A^*}\approx\sum_{k=1}^n|( \frac{\partial f}{\partial x_k} )^*|\cdot\frac{\epsilon(x^*_k)}{|A^*|} ϵr(A)=Aϵ(A)k=1n(xkf)Aϵ(xk)

8.误差分析的基本原则

  • 避免两个相近数相减
    两个相近数相减,有效数字会大大损失
  • 避免除数的绝对值远小于被除数的绝对值
  • 防止大数吃掉小数
    由于计算机位数有限,在数域中成立的运算法则在数值运算中可能不成立,比如结合律
  • 简化计算步骤,减少运算次数
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值