思路:容易看出是二分图的最大匹配问题,但是如何判断某点是否为关键点是关键。我们可以将每个可能的点枚举一下
然后进行删点,判断删点后的最大匹配是否仍等于原来的最大匹配即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int head[1000],cropath[1000],s,a[1000],b[1000],n;
bool use[1000],Map[1000][1000];
int pre[1000];
int DFS(int v)
{
int i,j,k;
for(i=1; i<=n; i++)
if(!use[i]&&Map[v][i])
{
use[i]=true;
if(cropath[i]==-1||DFS(cropath[i]))
{
cropath[i]=v;
return 1;
}
}
return 0;
}
int main()
{
int m,i,j,k,cla=1;
while(~scanf("%d%d%d",&m,&n,&k))
{
memset(cropath,-1,sizeof(cropath));
memset(Map,false,sizeof(Map));
for(i=0; i<k; i++)
{
scanf("%d%d",&a[i],&b[i]);
Map[a[i]][b[i]]=true;
}
printf("Board %d have ",cla++);
int ans=0;
for(i=1; i<=m; i++)
{
memset(use,false,sizeof(use));
if(DFS(i))
ans++;
}
int z=0,tmp;
for(i=0; i<k; i++)
{
tmp=0;
if(Map[a[i]][b[i]])
{
memset(cropath,-1,sizeof(cropath));
Map[a[i] ][b[i] ]=false;
for(int p=1;p<=m; p++)
{
memset(use,false,sizeof(use));
tmp+=DFS(p);
}
Map[a[i] ][b[i]]=true;
if(ans!=tmp)
z++;
}
}
printf("%d important blanks for %d chessmen.\n",z,ans);
}
return 0;
}