有手就会,手把手教你免费在云端部署stable diffusion

本教程适用于刚开始接触AI绘图或Stable Diffusion的朋友。

本地部署Stable Diffusion虽然免费,但对硬件有较高要求,如GPU需6G以上,否则生成图片可能耗时超过6小时。对于初学者而言,购买高性能设备太贵。使用云厂商的Serverless和NAS服务是更好的选择,它们支持按需付费,不使用时不产生费用。首次开通函数计算的用户可以领取免费额度,同时存储SD模型所需的性能型NAS也有免费体验额度,足以满足初步学习的需求。

今天我们就来薅一下厂商羊毛,快速实现Stable Diffusion云端部署。

stable diffusion 的云端详细部署教程

部署Stable Diffusion至阿里云的云端环境主要依赖于两个服务:函数计算(FC)和文件存储(NAS)。函数计算用于提供GPU运行时支持,而NAS则用于模型文件的存储。下面是基于上述信息整理的具体部署步骤。

一、准备阶段

  • 资源领取:首次使用阿里云函数计算FC和文件存储NAS产品的用户可以分别领取免费额度NAS免费额度以减少初期成本。
  • 登录控制台:确保你已经拥有阿里云账号,并已登录到阿里云控制台

二、创建应用

  1. 访问函数计算控制台,选择左侧菜单中的“应用”选项。
  1. 点击“创建应用”,从模板列表中找到“AI 数字绘画 Stable Diffusion”,并点击“立即创建”。
  1. 根据需求填写配置项:
    • 角色名:如未创建过所需角色,请先进行授权操作来创建AliyunFCServerlessDevsRole角色。
    • 地域:推荐选择“华东1(杭州)”。由于部分地域可能因网络限制无法直接访问某些外部站点,请谨慎选择。
    • 镜像选择:根据个人喜好或项目需要选择预装了不同插件与基础模型的镜像版本。
  1. 在确认页面阅读相关条款后勾选同意选项,点击“同意并继续部署”。

三、完成初始化及体验

  • 应用创建完成后,通过提供的WebUI域名链接进入Stable Diffusion界面。初次加载可能需要约30秒时间。
  • 利用界面上的功能开始尝试生成图像,只需输入描述性文本即可启动图片生成过程。

四、自定义模型管理

如果希望更换现有模型或添加新的扩展插件,则需执行以下额外步骤:

  1. 通过应用详情页访问“初始化模型管理”,按照指引创建必要的资源并设置管理密钥。
  1. 使用给定的模型管理域名登录模型管理器,并利用文件管理功能上传新的LoRA或其他类型的模型文件。
  1. 一旦新模型被成功上传且显示在列表中,就可以尝试将其应用于图像生成任务中,以观察效果变化。

请注意,虽然这里没有涉及具体的代码编写,但整个流程均是通过图形化界面完成的,无需编程经验即可操作。此外,为避免不必要的费用支出,在不再使用该服务时记得及时清理相关资源。

### 部署 Stable Diffusion 模型的方法 #### 本地环境部署 对于希望在个人计算机上运行Stable Diffusion模型的用户来说,可以按照如下方法操作: 文件准备方面,在下载所需资源后,应将模型重命名为`model.ckpt`并将其放置于特定位置,即`sd-webui/models/Stable-diffusion/`目录之下。例如,如果安装路径设定为`D:\stable-diffusion-webui\`,那么最终模型应当位于`D:\stable-diffusion-webui\models\Stable-diffusion\model.ckpt`[^1]。 除了基本的模型文件外,为了提升生成图像的质量,还可以考虑安装额外组件如GFPGAN用于人脸修复增强等功能。 #### 使用 Amazon SageMaker 平台部署 针对寻求云端解决方案的情况,利用亚马逊云科技提供的SageMaker服务能够实现快速简便地搭建起可用的服务端口。此过程不仅简化了基础设施管理的任务,而且允许开发者专注于应用程序逻辑本身而不必担心底层硬件配置等问题[^2]。 具体而言,由于Stable Diffusion是一种基于潜在扩散模型(Latent Diffusion Models)设计而成的文字转图片(text-to-image)工具,它内部包含了变分自动编码器(Variational Auto Encoder),U-Net架构以及文本编码机制三大部分;这些特性共同作用使得即使是在普通消费级显卡设备上也能高效完成高质量视觉内容创作工作。 ```bash # 假设已经完成了AWS CLI配置 aws sagemaker create-model \ --model-name my-stable-diffusion-model \ --primary-container Image=763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference:1.9.1-gpu-py38-ea1,ModelDataUrl=s3://path/to/model.tar.gz \ --execution-role arn:aws:iam::your-account-id:role/service-role/AmazonSageMaker-ExecutionRole-your-execution-role ``` 上述命令展示了如何创建一个新的机器学习模型实例,并指定了所使用的容器镜像地址及存储桶内的预训练权重链接等必要参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值