【文献阅读】DSC-MVSNet: 基于深度可分离卷积的注意力感知代价体积正则化


在这里插入图片描述

DSC-MVSNet: 基于深度可分离卷积的注意力感知代价体积正则化

一、研究背景与动机

多视图立体视觉(MVS)在增强现实和三维重建中得到了广泛应用。然而,传统的MVS方法在处理弱纹理或非Lambertian表面时往往表现不佳。近年来,深度学习方法通过代价体积正则化过程在MVS领域取得了显著成果,但现有的方法难以在效率和有效性之间取得平衡。因此,本文提出了DSC-MVSNet框架,旨在通过深度可分离卷积(DSC)和注意力机制提高代价体积正则化的效率。

二、DSC-MVSNet框架概述

DSC-MVSNet是一个粗到细的端到端框架,包括四个主要子过程:特征提取、代价体积正则化、深度图上采样和深度图细化。该框架通过引入深度可分离卷积和注意力机制,显著提高了MVS深度估计的效率和准确性。
在这里插入图片描述

三、特征提取

特征提取是MVS任务中的关键步骤。本文使用了一个信息丰富的特征提取网络,该网络通过跳跃连接传播低级空间信息以聚合多级特征信息。这种设计有助于捕捉更多的细节和上下文信息,为后续步骤提供更有力的支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GL_Rain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值