免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 26120 Accepted Submission(s): 8911
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
Author
lwg
Recommend
We have carefully selected several similar problems for you:
2084
1058
1203
1257
1421
设状态dp[t][i] 表示 第 t 秒在i位置时,所能得到的最多的馅饼数目,设xianbin[t][i]表示第t秒时i位置的馅饼数目
显然 dp[t][i] = max{ dp[t - 1][i] + xianbin[t][i], dp[t - 1][i - 1]+ xianbin[t][i], dp[t - 1][i + 1] + xianbin[t][i] }
知道这些就简单了
设状态dp[t][i] 表示 第 t 秒在i位置时,所能得到的最多的馅饼数目,设xianbin[t][i]表示第t秒时i位置的馅饼数目
显然 dp[t][i] = max{ dp[t - 1][i] + xianbin[t][i], dp[t - 1][i - 1]+ xianbin[t][i], dp[t - 1][i + 1] + xianbin[t][i] }
知道这些就简单了
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int xianbin[100010][15];
int dp[100010][15];
int main()
{
int n;
while (~scanf("%d", &n), n)
{
memset ( xianbin, 0, sizeof(xianbin) );
int x, t, c1, c2, c3;
int all_time = 0;
for (int i = 0; i < n; ++i)
{
scanf("%d%d", &x, &t);
all_time = max(all_time, t);
xianbin[t][x]++;
}
memset ( dp, 0, sizeof(dp) );
int l = 4, r = 6;
for (int i = 1; i <= all_time; ++i)
{
for (int j = l; j <= r; ++j)
{
c1 = c2 = c3 = 0;
c1 = dp[i - 1][j] + xianbin[i][j];
if (j > l)
{
c2 = dp[i - 1][j - 1] + xianbin[i][j];
}
if (j < r)
{
c3 = dp[i - 1][j + 1] + xianbin[i][j];
}
dp[i][j] = max(c1, max(c2, c3) );
}
if(l > 0)
{
l--;
}
if(r < 10)
{
r++;
}
}
int ans = 0;
for (int i = 0; i < 11; ++i)
{
ans = max(ans, dp[all_time][i]);
}
printf("%d\n", ans);
}
return 0;
}