Mashmokh’s boss, Bimokh, didn’t like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh’s team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn’t able to solve them. That’s why he asked you to help him with these tasks. One of these tasks is the following.
A sequence of l integers b1, b2, …, bl (1 ≤ b1 ≤ b2 ≤ … ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all i (1 ≤ i ≤ l - 1).
Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).
Input
The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).
Output
Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).
Sample test(s)
Input
3 2
Output
5
Input
6 4
Output
39
Input
2 1
Output
2
Note
In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].
dp[i][j]表示长度为i,第i个数为j的方案数
/*************************************************************************
> File Name: cf-240-div1-B.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年06月02日 星期二 12时35分58秒
************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
static const int mod = 1000000007;
LL dp[2010][2010];
int main() {
int n, k;
while (cin >> n >> k) {
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; ++i) {
dp[1][i] = 1;
}
for (int i = 1; i < k; ++i) {
for (int j = 1; j <= n; ++j) {
if (!dp[i][j]) {
continue;
}
for (int l = j; l <= n; l +=j) {
dp[i + 1][l] += dp[i][j];
dp[i + 1][l] %= mod;
}
}
}
LL ans = 0;
for (int i = 1; i <= n; ++i) {
ans += dp[k][i];
ans %= mod;
}
cout << ans << endl;
}
return 0;
}