字符串编辑类问题
题目详情
最初记事本上只有一个字符 'A'
。你每次可以对这个记事本进行两种操作:
Copy All
(复制全部):复制这个记事本中的所有字符(不允许仅复制部分字符)。
Paste
(粘贴):粘贴 上一次 复制的字符。
给你一个数字 n
,你需要使用最少的操作次数,在记事本上输出 恰好 n
个 'A'
。返回能够打印出 n
个 'A'
的最少操作次数。
示例1:
输入:3
输出:3
解释:
最初, 只有一个字符 'A'。
第 1 步, 使用 Copy All 操作。
第 2 步, 使用 Paste 操作来获得 'AA'。
第 3 步, 使用 Paste 操作来获得 'AAA'。
示例2:
输入:n = 1
输出:0
我的代码:
以往写过的动态规划/背包问题都是加减形式实现,而这道题因为是copy paste,是倍数关系的动态规划,所以需要乘除形式实现
一维数组 dp
,其中位置i
表示延展到长度i
的最少操作次数。对于每个位置j
,如果 j
可以被i
整除,那么长度i
就可以由长度 j
操作得到,其操作次数等价于把一个长度为 1
的A
延展到长度为 i/j
。因此我们可以得到递推公式 dp[i] = dp[j] + dp[i/j]
。
class Solution
{
public:
int minSteps(int n)
{
vector<int> dp(n + 1);
for (int i = 2; i <= n; ++i) //到长度i需要进行操作数dp[i]
{
dp[i] = i;
for (int j = 2; j * j <= i; ++j) //i可以由j的倍数得到 但是j的二倍却不能超过i
{
if (i % j == 0) //挑选出第一次i可以整除j的时候
{
dp[i] = dp[j] + dp[i/j]; //此时得到i的操作数就是得到j和得到i/j的操作数之和
break;
}
}
}
return dp[n];
}
};