运动一致性判断

本文探讨了运动一致性检测在动态场景SLAM中的重要性,通过非参数统计和聚类方法实现RGB-D视觉里程计,解决IMU与视觉测量值之间的运动冲突。介绍了基于k-means聚类的图片分割和残差模型,利用t分布建立非参数统计模型来判断静态和动态部分。同时,文章还提到了基于IMU的运动冲突检测、利用DNN提取动态区域以及光学流方法在运动检测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直至以来,SLAM的研究共朝着三个方向努力:精度、速度、鲁棒性。尤以鲁棒性居多。通常动态场景中,根据IMU测量值与视觉测量值分别进行计算得到的结果会有所不同。因此需要进行一致性的检测,以得到真值。本文将主要讲运动一致性检测。

运动一致性判断

基于聚类将图片分割之后获得的区域需要判断其运动一致性以分离动态物体和静态背景。

目的:对图片中各部分进行运动一致性判断以分离出目标和背景。

下面介绍各个论文中的判断方法

Nonparametric Statistical and Clustering Based RGB-D Dense Visual Odometry in a Dynamic Environment

该论文将RGB图片与深度图结合后进行k均值聚类以实现图片分割

过程:

  1. 进行k-means聚类
  2. 计算每一个簇的残差
  3. 根据计算出的残差建立非参数统计模型

聚类的好处有两点:

  1. 能够将非刚体场景表示基于聚类的刚体场景
  2. 可有效增强密集运动的分割效果,从而支持场景流估计和避障。

本文使用了一个残差模型。该模型基于一个假设:

若图片对齐,则基于静态背景的聚类将会有一个很小的残差。

光照强度残差:
$$
r^p_I(\xi)= I_k(W(x^p_{k-n},\xi^k_{k-n}))-I_{k-n}(x^p_{k-n})
$$
图像扭曲,Warp函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值