吴恩达作业(1)-- 用神经网络思想实现Logistic回归--识别猫

题目
输入图片,判断是否是猫。是猫输出y=1,否则y=0。
数据集

  1. train_catvnoncat.h5:
    训练集,维度为:(209,64,64,3),即209张64*64的彩色图片
  2. test_catvnoncat.h5:
    测试集,维度为:(50,64,64,3),即50张64*64的彩色图片

代码编写

  1. 加载数据集
    h5和字典类似,通过key去取对应的value。
    train_catvnoncat.h5有三个key,分别是list_classes(类别)、train_set_x(图片集合)、 train_set_y(标签)
    需要对图片做的处理是将(64,64 ,3)的图片平铺成一维数组,作为模型的输入。
#加载和处理数据
def load_data():
    #获取原始训练集数据
    train_data_org = h5py.File('train_catvnoncat.h5')
    test_data_org = h5py.File('test_catvnoncat.h5')
    
    #h5文件类似字典类型,通过key去获取value
    for key in train_data_org.keys():
        print(key)
    '''
    输出:
    list_classes
    train_set_x
    train_set_y
    '''
    
    #获取训练集数据
    train_x_org = train_data_org["train_set_x"]
    train_y_org = train_data_org["train_set_y"]
    
    #获取测试集数据
    test_x_org = test_data_org["test_set_x"]
    test_y_org = test_data_org["test_set_y"]
    
    #维度和样本数量
    #feature维度
    n = np.shape(train_x_org)[1]*np.shape(train_x_org)[2]*np.shape(train_x_org)[3]
    #训练集样本数
    m_train = np.shape(train_x_org)[0]
    #测试集样本数
    m_test = np.shape(test_x_org)[0]
    
    #将标签平坦成一维数组
    train_y = np.array(train_y_org).reshape(1,m_train)
    test_y = np.array(test_y_org).reshape(1,m_test)
    
    '''
		千万注意下面维度的次序是m_train,-1,别整反了
	'''
    #x数据集是64x*64*3*m的图片数组,将数据集转成12288*m的图片数组
    train_x = np.array(train_x_org).reshape(m_train,-1).T
    test_x = np.array(test_x_org).reshape(m_test, -1).T
    
    
    return train_x_org,test_x_org,train_x,test_x,train_y,test_y
  1. 定义激活函数和初始化函数
    LR采用的是sigmoid函数,将参数w和b初始化为0
#激活函数
def sigmoid(z):
    return 1/(1+np.exp(-z))

#初始化函数
def init_parameter(dim):
    #权重和偏置初始化为0
    w = np.zeros((dim,1))
    b = 0
    return (w,b)
  1. 传播与优化
    这一步要做的就是实现下面的式子,z是sigmoid的输入,A是sigmoid的输出。dw和db是下降的梯度值。
    在这里插入图片描述
def propagate(x,y,w,b):
    #正向传播
    #计算激活函数输入
    z = np.dot(w.T,x) + b#z的维度:(1,m)
    #计算激活函数输出
    a = sigmoid(z)
    
    m = np.shape(x)[1]
    
    #计算代价函数
    cost = (-1/m)*np.sum((y*np.log(a)+(1-y)*np.log(1-a)))
    
    #反向传播
    #预测值-真实值
    dz = a - y
    
    #计算梯度值
    dw = (1/m)*np.dot(x,dz.T)#dw的维度:(n,1)
    db = (1/m)*np.sum(dz)
    
    #创建字典保存梯度
    gradient = {"dw":dw,"db":db}
    
    return gradient,cost

'''
iterations:迭代次数
alpha:学习率
'''
def optimize(x,y,w,b,iterations,alpha):
    #记录代价函数值
    costs = []
    
    #迭代iterations次
    for i in range(iterations):
        #获取梯度值和代价函数值
        gradient,cost = propagate(x,y,w,b)
        
        dw = gradient["dw"]
        db = gradient["db"]
        
        #梯度下降更新参数
        w = w - alpha*dw
        b = b - alpha*db
        
        #每迭代100次记录代价函数
        if i%100 == 0:
            costs.append(cost)
            print("迭代次数",i,",erro:",cost)
        
        #字典保存更新后的参数
    parameter = {"w":w,"b":b}
    return (parameter,costs)
  1. 预测函数
    LR输出的是概率密度函数值,大于0.5当成猫y=1,小于0.5则y=0
def predict(x,w,b):
    #预测其实就是正向传播的过程
    #计算激活函数输入
    z = np.dot(w.T,x) + b#z的维度:(1,m)
    #计算激活函数输出
    a = sigmoid(z)
    for i in range(np.shape(a)[1]):
        if a[0,i]>0.5:
            a[0,i]=1
        else:
            a[0,i]=0
    return a
  1. 模型整合
    初始化参数w和b→梯度下降进行优化→获取参数w和b→测试集预测
#模型组装
def LR_model(train_x,train_y,test_x,test_y,iterations,alpha):
    #初始化参数
    w,b = init_parameter(np.shape(train_x)[0])
    
    #梯度下降优化
    parameter,costs = optimize(train_x,train_y,w,b,iterations,alpha)
    
    w,b = parameter["w"],parameter["b"]
    
    #测试
    y_pred_test = predict(test_x,w,b)
    y_pred_train = predict(train_x,w,b)
    
    #准确率
    print('训练集准确率:',100*(1-np.mean(np.abs(y_pred_train-train_y))),"%")
    print('测试集准确率:',100*(1-np.mean(np.abs(y_pred_test-test_y))),"%")
    
    result = {"w":w,"b":b,"costs":costs,"y_pred_test":y_pred_test,"y_pred_train":y_pred_train}
    
    return result
  1. 模型调用与实验结果
train_x_org,test_x_org,train_x,test_x,train_y,test_y = load_data()
#中心化
train_x,test_x = train_x/255,test_x/255
#plt.imshow(train_x_org[0])
result = LR_model(train_x,train_y,test_x,test_y,2000,0.005)

实验结果:
在这里插入图片描述
7. 新图测试

#获取参数
w,b = result['w'],result['b']
#载入新图片
new_cat = plt.imread('new_cat.jpeg')
from skimage import transform
#调整成64*64*3的大小
new_cat = transform.resize(new_cat,(64,64))
#显示图片
plt.imshow(new_cat)
#预测
predict(new_cat.reshape(64*64*3,1),w,b)

结果:
在这里插入图片描述

完整代码

import numpy as np
import h5py
import matplotlib.pyplot as plt
%matplotlib inline

#加载和处理数据
def load_data():
    #获取原始训练集数据
    train_data_org = h5py.File('train_catvnoncat.h5')
    test_data_org = h5py.File('test_catvnoncat.h5')
    
    #h5文件类似字典类型,通过key去获取value
    for key in train_data_org.keys():
        print(key)
    '''
    输出:
    list_classes
    train_set_x
    train_set_y
    '''
    
    #获取训练集数据
    train_x_org = train_data_org["train_set_x"]
    train_y_org = train_data_org["train_set_y"]
    
    #获取测试集数据
    test_x_org = test_data_org["test_set_x"]
    test_y_org = test_data_org["test_set_y"]
    
    #维度和样本数量
    #feature维度
    n = np.shape(train_x_org)[1]*np.shape(train_x_org)[2]*np.shape(train_x_org)[3]
    #训练集样本数
    m_train = np.shape(train_x_org)[0]
    #测试集样本数
    m_test = np.shape(test_x_org)[0]
    print(m_train,m_test)
    #将标签平坦成一维数组
    train_y = np.array(train_y_org).reshape(1,m_train)
    test_y = np.array(test_y_org).reshape(1,m_test)
    
    #x数据集是64x*64*3*m的图片数组,将数据集转成12288*m的图片数组
    train_x = np.array(train_x_org).reshape(m_train,-1).T
    #reshape(n,m_train)
    test_x = np.array(test_x_org).reshape(m_test, -1).T
    #reshape(n,m_test)
    
    return train_x_org,test_x_org,train_x,test_x,train_y,test_y

#激活函数
def sigmoid(z):
    return 1/(1+np.exp(-z))

#初始化函数
def init_parameter(dim):
    #权重和偏置初始化为0
    w = np.zeros((dim,1))
    b = 0
    return (w,b)

def propagate(x,y,w,b):
    #正向传播
    #计算激活函数输入
    z = np.dot(w.T,x) + b#z的维度:(1,m)
    #计算激活函数输出
    a = sigmoid(z)
    
    m = np.shape(x)[1]
    
    #计算代价函数
    cost = (-1/m)*np.sum((y*np.log(a)+(1-y)*np.log(1-a)))
    
    #反向传播
    #预测值-真实值
    dz = a - y
    
    #计算梯度值
    dw = (1/m)*np.dot(x,dz.T)#dw的维度:(n,1)
    db = (1/m)*np.sum(dz)
    
    #创建字典保存梯度
    gradient = {"dw":dw,"db":db}
    
    return gradient,cost

'''
iterations:迭代次数
alpha:学习率
'''
def optimize(x,y,w,b,iterations,alpha):
    #记录代价函数值
    costs = []
    
    #迭代iterations次
    for i in range(iterations):
        #获取梯度值和代价函数值
        gradient,cost = propagate(x,y,w,b)
        
        dw = gradient["dw"]
        db = gradient["db"]
        
        #梯度下降更新参数
        w = w - alpha*dw
        b = b - alpha*db
        
        #每迭代100次记录代价函数
        if i%100 == 0:
            costs.append(cost)
            print("迭代次数",i,",erro:",cost)
        
        #字典保存更新后的参数
    parameter = {"w":w,"b":b}
    #return不要包在for循环里了
    return (parameter,costs)
    
def predict(x,w,b):
    #预测其实就是正向传播的过程
    #计算激活函数输入
    z = np.dot(w.T,x) + b#z的维度:(1,m)
    #计算激活函数输出
    a = sigmoid(z)
    for i in range(np.shape(a)[1]):
        if a[0,i]>0.5:
            a[0,i]=1
        else:
            a[0,i]=0
    return a

#模型组装
def LR_model(train_x,train_y,test_x,test_y,iterations,alpha):
    #初始化参数
    w,b = init_parameter(np.shape(train_x)[0])
    
    #梯度下降优化
    parameter,costs = optimize(train_x,train_y,w,b,iterations,alpha)
    
    w,b = parameter["w"],parameter["b"]
    
    #测试
    y_pred_test = predict(test_x,w,b)
    y_pred_train = predict(train_x,w,b)
    
    #准确率
    print('训练集准确率:',100*(1-np.mean(np.abs(y_pred_train-train_y))),"%")
    print('测试集准确率:',100*(1-np.mean(np.abs(y_pred_test-test_y))),"%")
    
    result = {"w":w,"b":b,"costs":costs,"y_pred_test":y_pred_test,"y_pred_train":y_pred_train}
    
    return result

train_x_org,test_x_org,train_x,test_x,train_y,test_y = load_data()
train_x,test_x = train_x/255,test_x/255
#plt.imshow(train_x_org[0])
result = LR_model(train_x,train_y,test_x,test_y,2000,0.005)
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值