Problem Description
小明现在是人见人爱,花见花开的高富帅,整天沉浸在美女环绕的笙歌妙舞当中。但是人们有所不知,春风得意的小明也曾有着一段艰苦的奋斗史。
那时的小明还没剪去长发,没有信用卡没有她,没有24小时热水的家,可当初的小明是那么快乐,尽管甚至没有一把破木吉他…
之所以快乐,是因为那时的小明心怀逆袭梦想。有一天,小明为了给他心目中的女神买生日礼物,来到了某建筑工地搬砖挣钱。就在这个时候,工地上又运来了一卡车的砖,包工头让小明把卡车卸下来的那堆砖分成一块一块的(要求任何2块转都要分开)。作为资深搬运工,小明总是每次将一堆砖分为两堆,这时候,所消耗的体力是分完之后两堆砖数目的差值。
现在,已知卡车运来的砖的数目,请告诉小明最少要花费多少体力才能完成包工头所要求的任务呢?
Input
输入数据第一行是一个正整数T(T<=100),表示有T组测试数据。
接下来T行每行一个正整数N(N<=10000000),表示卡车运来的砖块的数目。
Output
对于每组数据,请输出小明完成任务所需的最少体力数。
Sample Input
2
4
5
Sample Output
0
2
解题思路:根据题意,求解最优解,第一想到动态规划,
然后又已知每次分俩堆,所以想到除以2,即每次等于上俩堆的和!
除以2无非就俩种情况:奇数,偶数
所以 ,i为偶数时 dp[i] = dp[i/2] + dp[i-i/2];//此处i-i/2是因为上俩堆的第一堆为i/2,所以第二堆为总共的减去第一堆的,即 i-i/2
而当i为奇数时,dp[i] = dp[i/2] + dp[i-i/2] + 1;例如15 = 7+8 ;8-7 = 1 所以需加一
#include <stdio.h>
#include <stdlib.h>
int dp[10000001];
void dynamic()
{
int i;
for(i=2;i<=10000000;i++)
{
if(i%2)
dp[i] = dp[i/2] + dp[i-i/2] + 1;//i为奇数需加1 例如:15 可以分成7和8,而8-7=1,所以需加1
else
dp[i] = dp[i/2] + dp[i-i/2];//i为偶数情况直接加上之前的情况即可
}
}
int main()
{
int t,n;
dynamic();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",dp[n]);
}
return 0;
}