- 问题描述
-
开学了,万恶的大二学长们又要领着大一的鲜肉们一起敲代码搬砖了,这不,著名的杨神拿着n块砖头,当然他把这n块砖头的重量都告诉你了,让你搬走其中的2*k块,其中每次你只能拿2块,消耗的体力是这两块砖头重量之差的平方,比如一块砖重量为5,另一块是11,那么搬走这两块砖头消耗体力为(11- 5)^2 = 36,机智如你,你能算出如何搬2*k块,才能使你花费的体力最小呢?
- 输入
-
一个整数t,代表数据组数(t <= 10)
每组数据包含2个整数n和k,保证0 <= 2*k <= n <= 2000
接下来一行包含n个整数(每个数都<= 100000) - 输出
-
每组一个整数,代表最小的体力消耗
- 样例输入
-
2 2 1 1 3 6 2 1 4 2 6 11 9
- 样例输出
-
4 5
- 要求搬两块砖消耗的体力越小,只需取重量之差最小的两块砖
- 若定义dp[i][j]为前i块砖中搬j对砖消耗的最少体力,则dp[i][j]的状态只与dp[i-1][j]和dp[i-2][j-1]有关
- 代码如下:
-
#include<stdlib.h> #include<stdio.h> #include<math.h> #include<string> #include<sstream> #include<iostream> #include<map> #include<string.h> #include<algorithm> using namespace std; const int N = 2005; int goods[N], dp[N][N/2]; void test() { int n,k; scanf("%d%d",&n,&k); memset(dp,0x3f3f3f3f,sizeof(dp)); for(int i=0; i<n; i++) { scanf("%d",&goods[i]); dp[i][0] = 0; } sort(goods,goods + n); for(int i=2; i<=n; i++) for(int j=1; 2*j<=i&&j<=k; ++j) dp[i][j] = min(dp[i-2][j-1]+(goods[i-1]-goods[i-2])*(goods[i-1]-goods[i-2]), dp[i-1][j]); int mn = 0x3f3f3f3f; for(int i=2; i<=n; i++) if(dp[i][k] < mn) mn = dp[i][k]; printf("%d\n",mn); } int main() { int t; scanf("%d",&t); while(t--) test(); return 0; }