题意
根据线段树的建树函数,输出线段树结点的最大编号 id;
思路
线段树中编号最大的结点一定出现在深度最大的那一层的最右边(废话)
假设当前一个区间 [ l , r ] ,当其分成两个区间 [ l , mid ] , [ mid + 1 , r ] 时,设两个区间的长度分别为 x , y, 则要么 x = y,要么 x = y + 1;
如果 x = y,则形成的左右子树形状完全相同,深度也相同,编号最大的结点一定出现在右子树上,即仅考虑右子树即可;
如果 x = y + 1,此时左子树深度可能比右子树大,若深度相同,则编号最大的结点还是出现在右子树上,只有当左子树的深度比右子树大的时候,才会出现在左子树;那什么时候左子树的深度比右子树的呢?
手画一下可以发现,当区间长度为1,2,4,8....等二的幂次时,所建出来的线段树是完美二叉树,若区间长度再加1,线段树深度就会加一;也就是说,在 x = y + 1 情况下,若 y 为二的幂次,则左子树深度才会比右子树大,编号最大的结点一定出现在左子树上;
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll build(ll p,ll l,ll r){
if(l==r) return p;
ll mid=l+r>>1;
ll x=mid-l+1,y=r-mid;
//仅当左子树大小大于右子树且右子树区间为二的幂次时,才递归左子树
//用loebit方式判断一个数是否为二等幂次
if(x>y&&(y-(y&-y)==0)) return build(p<<1,l,mid);
return build(p<<1|1,mid+1,r);
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int _;
cin>>_;
while(_--){
ll n;
cin>>n;
ll ans=build(1,1,n);
cout<<ans<<"\n";
}
return 0;
}
还没完
还看到一种方法,直接判断了左右子树的深度进行比较,判断编号最大的结点在哪
//判断区间长度为x的线段树的深度
int dep(ll x){
int ans=1;
while(x>1){
x=(x+1)>>1;
ans++;
}
return ans;
}
简单说一下个人的理解, 对区间 [ 1 , n ] 建线段树,则区间 [ 1 , 1 ] 的结点一定在最后一层中,也就是说一直往左子树走,直到区间 [ 1 , 1 ] 的结点,该深度即为线段树的深度;x=(x+1)>>1,相当于将 x 置为 mid ,然后遍历 [ 1 , mid ] ;(但没上面的方法跑得快)