和谐之树(求线段树结点的最大编号)

题目链接

题意

根据线段树的建树函数,输出线段树结点的最大编号 id;

 

思路

     线段树中编号最大的结点一定出现在深度最大的那一层的最右边(废话)

     假设当前一个区间 [ l , r ] ,当其分成两个区间 [ l , mid ] , [ mid + 1 , r ] 时,设两个区间的长度分别为 x , y, 则要么 x = y,要么 x = y + 1;

     如果 x = y,则形成的左右子树形状完全相同,深度也相同,编号最大的结点一定出现在右子树上,即仅考虑右子树即可;

     如果 x = y + 1,此时左子树深度可能比右子树大,若深度相同,则编号最大的结点还是出现在右子树上,只有当左子树的深度比右子树大的时候,才会出现在左子树;那什么时候左子树的深度比右子树的呢?

     手画一下可以发现,当区间长度为1,2,4,8....等二的幂次时,所建出来的线段树是完美二叉树,若区间长度再加1,线段树深度就会加一;也就是说,在 x = y + 1 情况下,若 y 为二的幂次,则左子树深度才会比右子树大,编号最大的结点一定出现在左子树上;

代码

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;

ll build(ll p,ll l,ll r){
	if(l==r) return p;
	ll mid=l+r>>1;
	ll x=mid-l+1,y=r-mid;
	//仅当左子树大小大于右子树且右子树区间为二的幂次时,才递归左子树
	//用loebit方式判断一个数是否为二等幂次 
	if(x>y&&(y-(y&-y)==0)) return build(p<<1,l,mid); 
	return build(p<<1|1,mid+1,r);
}

int main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	int _;
	cin>>_;
	while(_--){
		ll n;
	    cin>>n;
	    ll ans=build(1,1,n);
	    cout<<ans<<"\n";
	}
	return 0;
} 

还没完

     还看到一种方法,直接判断了左右子树的深度进行比较,判断编号最大的结点在哪

//判断区间长度为x的线段树的深度 
int dep(ll x){
	int ans=1;
	while(x>1){
		x=(x+1)>>1;
		ans++;
	}
	return ans;
}

     简单说一下个人的理解, 对区间 [ 1 , n ] 建线段树,则区间 [ 1 , 1 ] 的结点一定在最后一层中,也就是说一直往左子树走,直到区间 [ 1 , 1 ] 的结点,该深度即为线段树的深度;x=(x+1)>>1,相当于将 x 置为 mid ,然后遍历 [ 1 , mid ] ;(但没上面的方法跑得快)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值