L3-032 关于深度优先搜索和逆序对的题应该不会很难吧这件事(思维,树状数组)

题目链接

题意

思路

    一时间无从下手,听了dls的讲解才有了写思路;

    观察到若两个点 x,y 是有祖先关系,设 x 为 y 的祖先,则无论以什么方式遍历,x 始终在 y 的前面,我们将这样的点对记为第一类点;其余没有祖先关系的点对记为第二类点;

    对与第一类点,可通过计算它与它祖先形成的逆序对,暴力枚举祖先肯定会超时,在普通逆序对计算时,我们可以通过树状数组 / 线段树等数据结构快速地得到一个点的逆序对个数,所以如果对于一个点 x,我们将其所有祖先存在树状数组中,就可以快速得到有多少个值比它大的祖先,即逆序对个数;

    但对于每一个点,其祖先并不相同,需在树状数组中更新祖先信息,考虑对树的遍历,是不是就像维护了一个栈,当遍历到一个点就把这个点压如栈顶,遍历完这个点的子树信息之后,就把这个点弹出,我们并没有真的去维护这个栈,在 dfs 过程中,系统就帮我们维护了,其实,在遍历任一状态,这个栈当中的元素仅有当前点以及其各个祖先,故可以在遍历的过程中实现对树状数组的操作,当前点入栈时,就将其值放入树状数组,出栈时,就把其值从树状数组删去,本次天梯赛L2-043 龙龙送外卖,也用到了这个方法;

    这样就可以得到第一类点所形成的逆序对个数,还需要乘上不同遍历方式的总个数,才是第一类点的总价值;若一个点有三个儿子,在不同的遍历方式下,这三个儿子可以任意排列;树的总遍历方式即为每个点的儿子的排列方式的乘积,设第 i 个点有 x{_{i}} 个儿子,则树的总遍历方式数为\sum x_{i}! ;

   下面分析第二类点,若一个点有若干棵子树,则在不同遍历方式下,子树的遍历顺序不同,会有全排列种情况,属于不同子树的两个点 x,y 在全排列中,有一半的情况 x 在前,另一半 y 在前,考虑期望,则在一种遍历方式下,点对 x,y 所产生的逆序对为 1/2,乘以总的遍历方式即为该点对的总贡献;

    对于一个点 x,如何快速得到与其不是祖先关系的点,可以发现若 y 是 x 的祖先,则 y 不是第二类点,同时,若 y 在 x 的子树中,y 也不是第二类点,剩下的点即为第二类点;在该题中,每一个点的编号即为其值,也就是说每个点的权值不相同,两个不同的点在某些遍历方式下一定会形成逆序对;也就是说,我们并不需要知道具体哪些点与 x 形成第二类点,只需要知道其个数,可以通过维护子树节点数,以及深度(深度即可得到有几个点是当前点的祖先)得到,故点对 x 所形成的贡献为 遍历方式个数 * 1/2 * 第二类点的个数 * 1/2,第二个 1/2 是因为,对于点对 x,y 会计算一次贡献, y,x 又会计算一次;

代码

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int MOD=1e9+7;

struct node{
	int to,nex;
}edge[600010];
int head[300010],cnt;
int tree[300010],n,dep[300010],siz[300010];
ll ans,son=1,er=500000004;

inline int lowbit(int x){
	return x&-x;
}

void add(int x,int k){
	for(int i=x;i<=n;i+=lowbit(i)) tree[i]+=k;
}

int find(int x){
	int ans=0;
	for(int i=x;i>0;i-=lowbit(i)) ans+=tree[i];
	return ans;
}

void addedge(int x,int y){
	edge[++cnt].to=y;
	edge[cnt].nex=head[x];
	head[x]=cnt;
}

void dfs(int p,int f){
	siz[p]=1;
	dep[p]=dep[f]+1;
	ll tmp=find(n-p+1),x=1,yy=1;
	ans=(ans+tmp)%MOD;
	add(n-p+1,1);
	for(int i=head[p];i!=-1;i=edge[i].nex){
		int y=edge[i].to;
		if(y==f) continue;
		x=x*yy%MOD; yy++;
		dfs(y,p);
		siz[p]+=siz[y];
	}
	if(x>1) son=son*x%MOD;
	add(n-p+1,-1);
}

int main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	memset(head,-1,sizeof(head));
	ll root,x,y;
	cin>>n>>root;
	for(int i=1;i<n;i++){
		cin>>x>>y;
		addedge(x,y); addedge(y,x);
	}
	dfs(root,0);
	ans=ans*son%MOD;
	for(int i=1;i<=n;i++){
		x=n-dep[i]-siz[i]+1;
		ans=(ans+x*son%MOD*er%MOD*er%MOD)%MOD;
	}
	cout<<ans<<"\n";
	return 0;
}

### PTA 中与深度优先搜索 (DFS) 逆序对相关的目或概念 #### 深度优先搜索 (DFS) 深度优先搜索是一种用于遍历图或树的算法。它沿着一条路径尽可能深地探索节点,直到无法继续为止,然后回溯并尝试其他路径。在实现过程中通常会使用栈或者递归来管理待访问的节点。 以下是基于 DFS 的一些经典应用及其解法: 1. **迷宫问** 迷宫问是经典的 DFS 应用之一。通过模拟机器人从起点到终点的移动过程,可以利用 DFS 来寻找是否存在可行路径。 ```cpp void dfs(int x, int y) { if (!isValid(x, y)) return; visited[x][y] = true; for (int d = 0; d < 4; ++d) { // 上下左右四个方向 int nx = x + dx[d], ny = y + dy[d]; dfs(nx, ny); } } ``` 2. **连通分量计数** 对于无向图中的连通分量数量统计问,可以通过多次调用 DFS 实现。每次找到一个新的未访问节点时启动一次新的 DFS 遍历。 3. **拓扑排序** 使用 DFS 可以完成有向无环图 (DAG) 的拓扑排序。具体方法是在退出某个顶点之前将其加入结果列表中[^1]。 --- #### 逆序对的概念及计算方式 在一个数组中,如果存在两个索引 \(i\) \(j\) (\(i<j\)) 并且满足条件 \(arr[i]>arr[j]\),那么这对 \((i,j)\) 就被称为一个逆序对。对于大规模数据集来说,暴力枚举所有可能组合的时间复杂度过高,因此需要更高效的解决方案。 一种常见的高效解决办法是采用归并排序的思想,在合并阶段记录跨区间产生的新逆序关系数目[^3]。 ```python def merge_count_inversions(arr): if len(arr) <= 1: return arr, 0 mid = len(arr)//2 left_arr, left_inv = merge_count_inversions(arr[:mid]) right_arr, right_inv = merge_count_inversions(arr[mid:]) merged_arr, split_inv = merge_and_count_split_inversions(left_arr, right_arr) total_inv = left_inv + right_inv + split_inv return merged_arr, total_inv def merge_and_count_split_inversions(left, right): result = [] count = i = j = 0 while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) count += len(left)-i j += 1 result.extend(left[i:]) result.extend(right[j:]) return result, count ``` 上述代码展示了如何借助归并排序来有效计算逆序对的数量。 --- #### 结合两者的应用场景 某些情况下,可能会遇到既涉及 DFS 又涉及到逆序对处理的问。例如在一棵二叉树上定义某种顺序排列叶子结点的方式之后再讨论这些叶节点之间形成的逆序情况等问。此时就需要综合运用两种技巧共同解决问---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值