os.walk

[python]
import cv2
from matplotlib import pyplot as plt 
import numpy as np
import os
import re




images = []
labels = []
imagedir='/home/wujunjie/defect/Defect-Detection-with-tensorflow-master'
for root, dirs, files in os.walk(imagedir):
        print ('root',root)
        print ('dirs',dirs)
        print ('files',files)
        print ('   ')
        print ('   ')

第一次循环,首先进 /home/wujunjie/defect/Defect-Detection-with-tensorflow-master这个目录,发现有两个文件夹叫finalver,prever,还有一堆文件。

第二次循环,进入/home/wujunjie/defect/Defect-Detection-with-tensorflow-master/FinalVer这个目录,发现没有文件夹,但是有一堆文件。

第三次循环,进入/home/wujunjie/defect/Defect-Detection-with-tensorflow-master/PreVer这个目录,也没有发现文件夹,但是也有一堆文件。

 

【源码免费下载链接】:https://renmaiwang.cn/s/0e6hs 数字信号处理实习实验二离散信号的频谱分析MATLAB本实验旨在掌握离散时间信号的DTFT和DFT的MATLAB实现,熟悉DTFT和DFT之间的关系,了解信号不同变形的DFT与原信号DFT之间的关系,掌握系统函数和频率响应之间的关系。一、DTFT和DFT的概念DTFT(Discrete-Time Fourier Transform)是对离散时间信号进行频谱分析的重要工具,它可以将时域信号转换为频域信号,从而分析信号的频率特性。DFT(Discrete Fourier Transform)是DTFT的一种近似实现形式,它可以将有限长信号转换为频域信号。二、实验目的1. 掌握离散时间信号的DTFT和DFT的MATLAB实现2. 熟悉DTFT和DFT之间的关系3. 了解信号不同变形的DFT与原信号DFT之间的关系4. 掌握系统函数和频率响应之间的关系三、实验内容1. 自定义一个长度为8点的信号,信号幅度值也由自己任意指定,对该信号作DTFT,分别画出幅度谱和相位谱2. 对信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT与DTFT之间的关系3. 在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较4. 将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较5. 已知离散时间系统差分方程为y(n)-0.5y(n-1)+0.06y(n-2)=x(n)+x(n-1),求出并画出其频率响应6. 求该系统系统函数,并画极零点图,并通过freqz函数求频率响应四、设计流程1. 自定义序列为x=[1,2,3,4,5,8,9,7]2. 使用MATLAB实现DTFT和DFT3. 画出幅度谱和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值