Description
我们知道机器调度是计算机科学中一个非常经典的问题。调度问题有很多种,具体条件不同,问题就不同。现在我们要处理的是两个机器的调度问题。
有两个机器A和B。机器A有n种工作模式,我们称之为mode_0,mode_l,……,mode_n-1。同样,机器B有m种工作模式,我们称之为mode_0,mode_1,……,mode_m-1。初始时,两台机器的工作模式均为mode_0。现在有k个任务,每个工作都可以在两台机器中任意一台的特定的模式下被加工。例如,job0能在机器A的mode_3或机器B的mode_4下被加工,jobl能在机器A的mode_2或机器B的mode_4下被加工,等等。因此,对于任意的jobi,我们可以用三元组(i,x,y)来表示jobi在机器A的mode_x或机器B的mode_y下被加工。
显然,要完成所有工作,我们需要不时的改变机器的工作模式。但是,改变机器的工作状态就必须重启机器,这是需要代价的。你的任务是,合理的分配任务给适当的机器,使机器的重启次数尽量少。
Input
第一行三个整数n,m(n,m<=100),k(k<6000)。接下来的k行,每行三个整数i,x,y。
Output
只一行一个整数,表示最少的重启次数。
Sample Input
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
Sample Output
3
这道题做了好几天
原因是oj上给的数据范围与测试数据不符
看来还是要把数组开大点啊
做法就是从A到B连边,求最小覆盖
#include<cstdio>
#include<cstring>
int m,n,my[101],vst[101],g[101][101];
int dfs(int i)
{
for(int j=1;j<=m;j++)
if(g[i][j]&&!vst[j])
{
vst[j]=1;
if(!my[j]||dfs(my[j])) { my[j]=i;return 1; }
}
return 0;
}
void Hungary()
{
int ans=0;
memset(my,0,sizeof(my));
for(int i=1;i<=n;i++)
{
memset(vst,0,sizeof(vst));
if(dfs(i)) ans++;
}
printf("%d\n",ans);
}
int main()
{
int i,k,x,y,z;
scanf("%d%d%d",&n,&m,&k);
for(i=1;i<=k;i++)
{
scanf("%d%d%d",&x,&y,&z);
g[y][z]=1;
}
Hungary();
return 0;
}