- 博客(23)
- 收藏
- 关注
原创 深度学习发展
以下内容均为个人观点,如有错误,可以与我联系,我会尽快改正。在本文中,我们回顾了深度学习的发展历程,从2000年以前的符号主义到2020年的Vision Transformer。这一演进过程展示了深度学习在人工智能领域的巨大进步,如2012年的AlexNet和2015年的ResNet等重要里程碑。深度学习不仅改变了我们对计算机视觉和自然语言处理等问题的解决方式,还在图像识别领域取得了显著的成就。
2023-10-09 11:13:37 332
原创 深度学习特征变形与通道位置与深度学习常用变形函数和区别(reshape、view、einsum和matmul)
深度学习特征变形与通道位置与深度学习常用变形函数和区别(reshape、view、einsum和matmul)
2023-07-02 22:29:18 719 1
原创 模型权重提取
我们在加载网络时,有时节点内的模型和我们的模型不一样,这个时候我们要把模型提取出来,只留下我们需要的那部分,有时还需要改变节点的名字。
2023-05-15 15:27:28 199
原创 加载权重BUG:在使用pytorch加载模型遇到问题ModuleNotFoundError: No module named ‘‘XXX“
加载权重BUG:在使用pytorch加载模型遇到问题ModuleNotFoundError: No module named ‘‘XXX":使用torch.load(path, map_location=“cpu”)来加载模型。
2023-05-14 22:01:02 383
原创 使用神经网络与支持向量机实现图片分类
今天使用神经网络来为支持向量机(SVM)提供特征,然后实现图片分类。这里直接加载了预训练模型,所以分离器精度不高,若想提高精度要对模型进行细调。
2023-03-26 13:40:47 640
原创 pytorch对网络层的增加,删除,变更和切片
今天在这里纪录一下如何对torch网络的层进行更改:变更,增加,删除与查找这里拿VGG16网络举例,先看一下网络结构。
2023-03-24 09:55:40 2586 3
原创 深度学习模型的构建三、优化函数optimizer
PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和余弦退火CosineAnnealing。自适应调整:自适应调整学习率 ReduceLROnPlateau。自定义调整:自定义调整学习率 LambdaLR。注意。
2022-09-27 10:45:14 1003
原创 深度学习模型的构建二、Loss函数
直觉地看,规范化的效果是让网络倾向于学习小一点的权重,其他的东西都一样的。交叉熵:它主要刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。其次,L2正则项可导,L1正则项不可导,这样使得带L2正则项的损失函数更方便更容易优化,而带L1正则项的损失函数的优化就比较复杂。也就是说,当预测错误时,损失函数为1,当预测正确时,损失函数值为0。代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。
2022-09-17 15:11:09 810
原创 深度学习模型的构建一、DataLoader
CV方向的深度学习算法的结构都大概差不多,大概由6部分构成:DataLoader,Loss、optimizer、lr_scheduler、module、结果可视化。接下来我会一一进行总结。
2022-09-14 14:21:37 1053 2
原创 深度学习模型的训练(大总结)
在我们训练模型时,会经常使用一些小技巧,包括:模型的保存与加载、断点的保存与加载、模型的冻结与预热、模型的预训练与加载、单GPU训练与多GPU训练。这些在我们训练网络的过程中会经常遇到。方法二:仅保存参数(数据量小,推荐!)注意:加载模型权重时,我们需要先实例化模型类,因为该类定义了网络的结构。如果模型的训练时间非常长,而这中间发生了一点小意外,使得模型终止训练,而下次训练时为了节省时间,让模型从断点处继续训练,这就需要在模型训练的过程中保存一些信息,使得模型发生意外后再次训练能从断点处继续训练。所以
2022-09-13 20:41:35 10864
原创 基于全局和局部对比自监督学习的高分辨率遥感图像语义分割day3 - 网络结构
想要学习一个网络,最重要的就是网络结构和损失函数,一个讲了网络是怎么学,一个讲了网络将会学成什么样(个人理解)。本文将会对网络进行讲解。
2022-08-17 18:57:38 1032
原创 深度学习常用工具-数据增强+绘图
Tqdm 是 Python 进度条库,可以在 Python 长循环中添加一个进度提示信息。用户只需要封装任意的迭代器,是一个快速、扩展性强的进度条工具库。推荐这个库的原因是:这个库可以将图片和标签一起变换,而transforms只能变换图片!进入库的源代码后,Notebooks里是在各种不同任务下使用的例子,其实就是教程。在我们面临不同任务时,往往使用到的方法函数也不一样,所以要现用现查。,接下来我教你怎么使用他的帮助文档。
2022-07-31 15:50:16 1288
原创 学习笔记-基于全局和局部对比自监督学习的高分辨率遥感图像语义分割-day2
最近,监督深度学习在遥感图像(RSI)语义分割中取得了巨大成功。然而,监督学习进行语义分割需要大量的标记样本,这在遥感领域是很难获得的。自监督学习(SSL)是一种新的学习范式,通过预训练大量未标记图像的通用模型,然后在具有极少标记样本的下游任务上对其进行微调,可以解决此类问题。对比学习是SSL的一种典型方法,可以学习一般的不变特征。然而,大多数现有的对比学习方法是为分类任务设计的,以获得图像级表示,这对于需要像素级区分的语义分割任务可能是次优的。...
2022-07-28 21:08:52 3418
原创 学习笔记_用自己的训练集训练YOLOv7网络 - day4
上一篇文章讲了YOLOv7的环境搭建和如何用网络进行检测([文章链接](http://t.csdn.cn/ULbru)),今天我们要用自己的训练集去训练一个属于自己的网络。
2022-07-28 11:30:24 604
原创 学习笔记-基于全局和局部对比自监督学习的高分辨率遥感图像语义分割-day1
学习笔记-基于全局和局部对比自监督学习的高分辨率遥感图像语义分割-day1
2022-07-24 20:42:29 1103
原创 学习笔记_基于pytorch的YOLOv7 - day1阅读论文梳理概念
YOLOv7在5FPS到160FPS范围内的速度和精度都超过了所有已知的物体检测器,并且在GPUV100上具有30FPS或更高的所有已知实时物体检测器中具有最高的精度56.8%AP。具体情况如图与其他实时目标检测器的比较,YOLOv7实现了最先进的性能。实时对象检测是计算机视觉中非常重要的主题,因为它通常是计算机视觉系统中的必要组件。目标检测器YOLOv7主要希望它能够同时支持移动GPU和从边缘到云端的GPU设备。...
2022-07-22 22:24:45 1663
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人