1 题目描述
- 给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:
- 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。
- 如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。
- 返回在比赛中进行的配对次数,直到决出获胜队伍为止。
2 示例描述
2.1 示例1
输入:n = 7
输出:6
解释:比赛详情:
- 第 1 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。
- 第 2 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。
- 第 3 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。
总配对次数 = 3 + 2 + 1 = 6
2.2 示例2
输入:n = 14
输出:13
解释:比赛详情:
- 第 1 轮:队伍数 = 14 ,配对次数 = 7 ,7 支队伍晋级。
- 第 2 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。
- 第 3 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。
- 第 4 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。
总配对次数 = 7 + 3 + 2 + 1 = 13
3 解题提示
1 <= n <= 200
4 解题思路
简单来说,就是判断剩余的队伍数是否为1,若为1,则表示决出冠军,不再进行比赛,若不唯一则要继续比赛,两两队伍进行比赛胜利晋级,则队伍数/2表示需要打的场次(单双均符合),特别要考虑单数情况(1除外),如例一,第一轮有七支队伍,打三次,但是轮空了一只队伍,需要在后面胜利的三只队伍中加上这支队伍,再进行下一轮的计算,代码如下。
5 代码详解
class Solution {
public:
int numberOfMatches(int n) {
int ans = 0 ;
while( n != 1 )
{
ans = ans + n / 2 ;
if ( n % 2 == 1 )
{
n ++ ;
}
n = n / 2 ;
}
return ans ;
}
};