【Sklearn】基于随机森林算法的数据分类预测(Excel可直接替换数据)

本文详细介绍了随机森林算法的模型原理和数学模型,包括Bootstrap抽样、随机特征选择以及预测结果的聚合方式。同时,提到了在Python中使用Sklearn库构建随机森林分类器时的重要参数,如n_estimators、criterion等,并提供了资源下载地址、完整代码及运行结果。
摘要由CSDN通过智能技术生成

【Sklearn】基于随机森林算法的数据分类预测(Excel可直接替换数据)

1.模型原理

随机森林(Random Forest)是一种集成学习方法,通过组合多个决策树来构建强大的分类或回归模型。随机森林的模型原理和数学模型如下:

1.1 模型原理

随机森林是一种集成学习方法,它结合了多个决策树来改善预测的准确性和鲁棒性。每个决策树都是独立地训练,并且它们的预测结果综合起来形成最终的预测。随机森林的主要思想是构建一个“森林”,其中每棵树都是一个分类器,而每个分类器都在随机的数据子集上进行训练。在预测时,通过投票或平均来综合所有分类器的结果。

随机森林的主要步骤:

  1. 随机抽样(Bootstrap抽样): 从原始训练数据中随机抽取多个样本,允许同一个样本在一个抽样中出现多次,形成一个新的训练集。

  2. 随机特征选择: 对每个决策树的训练过程中,在节点分裂时,只考虑部分特征,而不是全部特征。这样有助于增加树之间的多样性,减少过拟合。

  3. 独立训练: 对于每个样本和每个决策树,使用随机抽样的训练数据和随机选择的特征进行训练,得到多棵独立的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值