Michael 喜欢滑雪。这并不奇怪,因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael 想知道在一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子:
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度会减小。在上面的例子中,一条可行的滑坡为 2424-1717-1616-11(从 2424 开始,在 11 结束)。当然 2525-2424-2323-\ldots…-33-22-11 更长。事实上,这是最长的一条。
输入格式
输入的第一行为表示区域的二维数组的行数 R和列数 C。下面是 R 行,每行有 C 个数,代表高度(两个数字之间用 11 个空格间隔)。
输出格式
输出区域中最长滑坡的长度。
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
25
很显然,直接dfs会TLE。那么就需要记忆化来优化。
用s[i][j]表示从(i,j)点出发能走的最长距离。
每次搜索一次记忆一次即可。
下面给刚接触不怎么明白的人举例:(已经理解的人跳过)
由于样例不好讲我自己举例子:
3 3
1 1 3
2 3 4
1 1 1
先去找(1,1)的最长距离,很明显为1
接着找(1,2)的最长距离,很明显为1
接着找(1,3)的最长距离,为2((1,3)->(1,2))
然后找(2,1)的最长距离,为2((2,1)->(1,1))
然后是(2,2)的最长距离,如果没有记忆化,那么搜索过程为:(2,2)->(2,1)->(1,1)
但是(2,1)之前已经搜过了,再去搜就是浪费时间,之前搜索已经知道(2,1)的值为2,那么搜索过程就是缩短为:(2,2)->(2,1),即为3
#include <bits/stdc++.h>
using namespace std;
int n, m;
int mp[110][110];
int ans = -100;
int dx[] = {1, -1, 0, 0};
int dy[] = {0, 0, 1, -1};
int s[110][110];
int dfs(int x, int y)
{
if (s[x][y])
return s[x][y];
s[x][y] = 1;
for (int i = 0; i < 4; i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if (xx > 0 && xx <= n && yy > 0 && yy <= m && mp[x][y] > mp[xx][yy])
{
dfs(xx, yy);
s[x][y] = max(s[x][y], s[xx][yy] + 1);
}
}
return s[x][y];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> mp[i][j];
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
ans = max(ans, dfs(i, j));
}
}
cout << ans << endl;
return 0;
}