题目描述
共有 4 种硬币。面值分别为c1,c2,c3,c4。
某人去商店买东西,去了 n 次,对于每次购买,他带了di 枚 i 种硬币,想购买 s 的价值的东西。请问每次有多少种付款方法。
输入格式
输入的第一行是五个整数,分别代表 c1,c2,c3,c4,n。
接下来 n 行,每行有五个整数,描述一次购买,分别代表d1,d2,d3,d4,s。
输出格式
对于每次购买,输出一行一个整数代表答案。
样例 #1
样例输入 #1
1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900
Copy
样例输出 #1
4 27
Copy
提示
数据规模与约定
- 对于 100% 的数据,保证 1≤n≤1000。
解题思路
这道题我们先看到他数据小,但贼多,暴力就直接pass掉了,我们可爱的暴力已经束手无策了,接下来我们就想到DP,DP枚举可能性是比较快的,可是这题怎么DP?这肯定是我看到这一题的第一感觉,对合法条件的约束非常的多!怎么办?
我们一不做二不休,直接不做了直接去枚举不合法的数量,最后用总数减去,于是我们就得先做一个完全背包,将所有可能枚举出来,存入数组,再来减。
可不合法的也很多呀!!这判断,估计一个大点的数据可以等到我安度晚年了……,我们可以用容斥原理来做,我们先将思路理清楚:
我们假设每种硬币都有无限枚,将能组成S的所有可能枚举,做一个完全背包问题,再利用容斥原理,举个例子 假设要组成20,有7、3面值的硬币各2枚,那么我们可以这么想
20
/ \
11元 3枚3元
接下来,这11元的所有可能就都是不合法的,因为3枚3元是没有的,由他衍生的所有可能都是不合法的。
利用这一特性,我们可以这么写:
第一步 完全背包
for(ll i=c1;i<=100001;i++)dp[i]+=dp[i-c1];//将四个数做完全背包,枚举可能性
for(ll i=c2;i<=100001;i++)dp[i]+=dp[i-c2];
for(ll i=c3;i<=100001;i++)dp[i]+=dp[i-c3];
for(ll i=c4;i<=100001;i++)dp[i]+=dp[i-c4];
第二步 容斥原理求解
ll f(ll x){
if(x<0)return 0;
return dp[x];
}
cout<<dp[s]-f(s-c1*(d1+1ll))
-f(s-c2*(d2+1ll))
-f(s-c3*(d3+1ll))
-f(s-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c2*(d2+1ll))
+f(s-c2*(d2+1ll)-c3*(d3+1ll))
+f(s-c3*(d3+1ll)-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c3*(d3+1ll))
+f(s-c1*(d1+1ll)-c4*(d4+1ll))
+f(s-c2*(d2+1ll)-c4*(d4+1ll))
-f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll))
-f(s-c1*(d1+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
-f(s-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
-f(s-c1*(d1+1ll)-c2*(d2+1ll)-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))<<endl;
这里我们先减去由单个数衍生的不合法状态,但其中会有2个数组成的合法状态,给他加回来,再减去3个数衍生的不合法状态,加上四个数组成的合法状态。1ll是防止爆long long。
这样代码虽然看起来极其恐怖😱,理解了其实并不复杂(只是有点费手,建议给手上保险,否则后果自负!😄)
代码实现
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll dp[100005],n;
ll f(ll x){
if(x<0)return 0;
return dp[x];
}
int main(){
int c1,c2,c3,c4;
cin>>c1>>c2>>c3>>c4>>n;
dp[0]=1;
for(ll i=c1;i<=100001;i++)dp[i]+=dp[i-c1];
for(ll i=c2;i<=100001;i++)dp[i]+=dp[i-c2];
for(ll i=c3;i<=100001;i++)dp[i]+=dp[i-c3];
for(ll i=c4;i<=100001;i++)dp[i]+=dp[i-c4];
while(n--){
ll d1,d2,d3,d4,s;
cin>>d1>>d2>>d3>>d4>>s;
cout<<dp[s]-f(s-c1*(d1+1ll))
-f(s-c2*(d2+1ll))
-f(s-c3*(d3+1ll))
-f(s-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c2*(d2+1ll))
+f(s-c2*(d2+1ll)-c3*(d3+1ll))
+f(s-c3*(d3+1ll)-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c3*(d3+1ll))
+f(s-c1*(d1+1ll)-c4*(d4+1ll))
+f(s-c2*(d2+1ll)-c4*(d4+1ll))
-f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll))
-f(s-c1*(d1+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
-f(s-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
-f(s-c1*(d1+1ll)-c2*(d2+1ll)-c4*(d4+1ll))
+f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))<<endl;
}
return 0;
}
记得开long long,不然会BOOM(爆)。