[HAOI2008] 硬币购物(完全背包问题,容斥原理)

题目描述

共有 4 种硬币。面值分别为c1​,c2​,c3​,c4​。

某人去商店买东西,去了 n 次,对于每次购买,他带了di​ 枚 i 种硬币,想购买 s 的价值的东西。请问每次有多少种付款方法。

输入格式

输入的第一行是五个整数,分别代表 c1​,c2​,c3​,c4​,n。

接下来 n 行,每行有五个整数,描述一次购买,分别代表d1​,d2​,d3​,d4​,s。

输出格式

对于每次购买,输出一行一个整数代表答案。

样例 #1

样例输入 #1

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Copy

样例输出 #1

4
27

Copy

提示

数据规模与约定
  • 对于 100% 的数据,保证 1≤n≤1000。

解题思路

这道题我们先看到他数据小,但贼多,暴力就直接pass掉了,我们可爱的暴力已经束手无策了,接下来我们就想到DP,DP枚举可能性是比较快的,可是这题怎么DP?这肯定是我看到这一题的第一感觉,对合法条件的约束非常的多!怎么办?

我们一不做二不休,直接不做了直接去枚举不合法的数量,最后用总数减去,于是我们就得先做一个完全背包,将所有可能枚举出来,存入数组,再来减。

可不合法的也很多呀!!这判断,估计一个大点的数据可以等到我安度晚年了……,我们可以用容斥原理来做,我们先将思路理清楚:

我们假设每种硬币都有无限枚,将能组成S的所有可能枚举,做一个完全背包问题,再利用容斥原理,举个例子 假设要组成20,有7、3面值的硬币各2枚,那么我们可以这么想

                             20

                         /             \

                     11元          3枚3元

接下来,这11元的所有可能就都是不合法的,因为3枚3元是没有的,由他衍生的所有可能都是不合法的。

利用这一特性,我们可以这么写:

第一步 完全背包

for(ll i=c1;i<=100001;i++)dp[i]+=dp[i-c1];//将四个数做完全背包,枚举可能性
for(ll i=c2;i<=100001;i++)dp[i]+=dp[i-c2];
for(ll i=c3;i<=100001;i++)dp[i]+=dp[i-c3];
for(ll i=c4;i<=100001;i++)dp[i]+=dp[i-c4];

第二步 容斥原理求解

 

ll f(ll x){
    if(x<0)return 0;
    return dp[x];
}
cout<<dp[s]-f(s-c1*(d1+1ll))
            -f(s-c2*(d2+1ll))
            -f(s-c3*(d3+1ll))
            -f(s-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c2*(d2+1ll))
            +f(s-c2*(d2+1ll)-c3*(d3+1ll))
            +f(s-c3*(d3+1ll)-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c3*(d3+1ll))
            +f(s-c1*(d1+1ll)-c4*(d4+1ll))
            +f(s-c2*(d2+1ll)-c4*(d4+1ll))
            -f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll))
            -f(s-c1*(d1+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
            -f(s-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
            -f(s-c1*(d1+1ll)-c2*(d2+1ll)-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))<<endl;

这里我们先减去由单个数衍生的不合法状态,但其中会有2个数组成的合法状态,给他加回来,再减去3个数衍生的不合法状态,加上四个数组成的合法状态。1ll是防止爆long long。

这样代码虽然看起来极其恐怖😱,理解了其实并不复杂(只是有点费手,建议给手上保险,否则后果自负!😄)

代码实现

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll dp[100005],n;
ll f(ll x){
    if(x<0)return 0;
    return dp[x];
}
int main(){
	int c1,c2,c3,c4;
    cin>>c1>>c2>>c3>>c4>>n;
    dp[0]=1;
	for(ll i=c1;i<=100001;i++)dp[i]+=dp[i-c1];
    for(ll i=c2;i<=100001;i++)dp[i]+=dp[i-c2];
	for(ll i=c3;i<=100001;i++)dp[i]+=dp[i-c3];
    for(ll i=c4;i<=100001;i++)dp[i]+=dp[i-c4];
    while(n--){
        ll d1,d2,d3,d4,s;
        cin>>d1>>d2>>d3>>d4>>s;
        cout<<dp[s]-f(s-c1*(d1+1ll))
            -f(s-c2*(d2+1ll))
            -f(s-c3*(d3+1ll))
            -f(s-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c2*(d2+1ll))
            +f(s-c2*(d2+1ll)-c3*(d3+1ll))
            +f(s-c3*(d3+1ll)-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c3*(d3+1ll))
            +f(s-c1*(d1+1ll)-c4*(d4+1ll))
            +f(s-c2*(d2+1ll)-c4*(d4+1ll))
            -f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll))
            -f(s-c1*(d1+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
            -f(s-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))
            -f(s-c1*(d1+1ll)-c2*(d2+1ll)-c4*(d4+1ll))
            +f(s-c1*(d1+1ll)-c2*(d2+1ll)-c3*(d3+1ll)-c4*(d4+1ll))<<endl;
    }
    

	return 0;
}

记得开long long,不然会BOOM(爆)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值