[HAOI2008]硬币购物(dp预处理 + 容斥原理 + 思维)

https://www.luogu.org/problemnew/show/P1450
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
先dp预处理出假设每种硬币有无限个买价值为i的东西的硬币的方案数(完全背包),然后就有两个很思维的东西了。
首先,因为硬币数量有限,根据容斥原理,只要把无限的方案减去第一种硬币超过限制的方案、减去第二种硬币超过限制的方案,减去第三种硬币超过限制的方案、减去第四种硬币超过限制的方案,那么最终就是没有一种硬币超过限制的方案了。但是这样会多减,那就加上两两超过限制的方案,减去三三超过限制的方案,加上四四超过限制的方案,就是最终的结果,这个二进制状压容斥即可。
那么第一种硬币超过限制的方案怎么求呢,那就是假设已经用了(d[1] + 1)个硬币,剩下的硬币任意分配,这样无论如何第一种都是超过限制的,于是第一种硬币超过限制的方案就是dp[s – (d[1] + 1) · c[1]],剩下的同理,那么这题就过了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5, mod = 1e9 + 7;
ll c[4], d[4], dp[maxn];
int main()
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值