POJ3469 Dual Core CPU

一.原题链接:http://poj.org/problem?id=3469

二.题目大意:在双核CPU中,每个任务只能在其中一个核运行,而且所有任务必须同时运行,给出它们分别在2个核里面的花费,如果某些任务不在同一个核运行,那么给出它们的花费。求它们全部运行时的最小花费。

三.解题思路:全部任务要同时运行,而且每个任务在2个不同的核里面的花费是不同的。我们可以想到建立一个源点和一个汇点,容量为其花费,而不在同一个核运行的任务建双向边,这样如果能够把源点和汇点分开的割表示的就是其花费,s能到达的点在t上处理,其余点在t上处理。而最小花费就是最小割,由最小割最大流定理,我们就愉快地转化为求最大流。

四.坑点:

1.数据量太大,无法用邻接矩阵,只能用邻接表。

2.i^1表示如果i为偶数就加1,i是奇数就减1,由于我代码的cnt是从0开始的,建边的时候建的残余网络那条反向边和正向边是连续的,因此这样就可以在O(1)访问到反向弧了。

3.边的最大值要很大,绝对不止200000,刚开始一直RE。

五.代码

1.Dinic  15148K 7094MS

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <cstdlib>

using namespace std;

const int INF = 0x3f3f3f3f,
          MAX_N = 30000, MAX_M = 1000000;
struct Edge
{
    int v, w, next;
};

int N, M, cnt, head[MAX_M], dist[MAX_N], s, t;
Edge edges[MAX_M];

void init()
{
    cnt = 0;
    s = N + 1, t = N + 2;
    memset(head, -1, sizeof(head));
}

void addEdge(int u, int v, int weight)
{
    edges[cnt] = (Edge){v, weight, head[u]};
    head[u] = cnt++;
    edges[cnt] = (Edge){u, 0, head[v]};
    head[v] = cnt++;
}

bool BFS()
{
    int i, cur;
    queue <int> que;
    que.push(s);
    memset(dist, -1, sizeof(dist));
    dist[s] = 0;
    while(!que.empty()){
        cur = que.front();
        que.pop();
        for(i = head[cur]; i != -1; i = edges[i].next)
            if(-1 == dist[edges[i].v] && edges[i].w){
                dist[edges[i].v] = dist[cur] + 1;
                que.push(edges[i].v);
            }
    }

    return dist[t] != -1;
}

int DFS(int start, int curFlow)
{
    if(start == t)
        return curFlow;
    int i, j, minFlow = 0, v, temp;
    for(i = head[start]; i != -1; i = edges[i].next){
        v = edges[i].v;
        if(dist[start] == dist[v] - 1 && edges[i].w > 0){
            temp = DFS(v, min(edges[i].w, curFlow));
            edges[i].w -= temp;
            edges[i^1].w += temp;
            curFlow -= temp;
            minFlow += temp;
            if(0 == curFlow)
                break;
        }
    }

    return minFlow;
}

int Dinic()
{
    int res = 0;
    while(BFS()){
        res += DFS(s, INF);
    }
    return res;
}

int main()
{
    //freopen("in.txt", "r", stdin);

    int i, j, cost1, cost2, u, v;
    scanf("%d%d", &N, &M);

    init();
    for(i = 1; i <= N; i++){
        scanf("%d%d", &cost1, &cost2);
        addEdge(s, i, cost1);
        addEdge(i, t, cost2);
    }

    for(i = 1; i <= M; i++){
        scanf("%d%d%d", &u, &v, &cost1);
        addEdge(u, v, cost1);
        addEdge(v, u, cost1);
    }

    printf("%d\n", Dinic());
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值