求最小花费,如果不为最小费用最大流,可以考虑是否为最小割,对于图来说最大流=最小割,如果能把每条边的花费当作流即可。
题意是给2个cup,有n个任务,这个任务可以在左核工作,也可以在右核工作,在不同的核上工作有不同的花费。
然后有m个需要相互传输数据的模块,意思是a和b如果不是在同一个核上面,需要多花费一个传输数据的费用。
对于无向图的最大流,把无向边的k容量变成正向和逆向都为k的容量即可。
建图A-i-B.A-I+1-B这样的建图,如果需要交换数据的模块,就在这个i与i+1建立一条边,求最小割的时候如果在同一个核上面,那么必然不会连这条边,
如果不在同一个核上面,那么必然会连这条边(因为如果不连就还有流量),而且不会重新某个任务连了A还连了B,因为其对应的数据交换的任务必定连了一个核,
A和B显然只需要再连一个(或+个数据交换的费用)就必定为最小割了。
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include <iostream>
using namespace std;
const int Ni = 210;
const int MAX = 1<<26;
struct Edge{
int u,v,c;
int next;
}edge[20*Ni];
int n,m;
int edn;//边数
int p[Ni];//父亲
int d[Ni];
int sp,tp;//原点,汇点
void addedge(int u,int v,int c)
{
edge[edn].u=u; edge[edn].v=v; edge[edn].c=c;
edge[edn].next=p[u]; p[u]=edn++;
edge[edn].u=v; edge[edn].v=u; edge[edn].c=0;
edge[edn].next=p[v]; p[v]=edn++;
}
int bfs()
{
queue <int> q;
memset(d,-1,sizeof(d));
d[sp]=0;
q.push(sp);
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=p[cur];i!=-1;i=edge[i].next)
{
int u=edge[i].v;
if(d[u]==-1 && edge[i].c>0)
{
d[u]=d[cur]+1;
q.push(u);
}
}
}
return d[tp] != -1;
}
int dfs(int a,int b)
{
int r=0;
if(a==tp)return b;
for(int i=p[a];i!=-1 && r<b;i=edge[i].next)
{
int u=edge[i].v;
if(edge[i].c>0 && d[u]==d[a]+1)
{
int x=min(edge[i].c,b-r);
x=dfs(u,x);
r+=x;
edge[i].c-=x;
edge[i^1].c+=x;
}
}
if(!r)d[a]=-2;
return r;
}
int dinic(int sp,int tp)
{
int total=0,t;
while(bfs())
{
while(t=dfs(sp,MAX))
total+=t;
}
return total;
}
int main()
{
freopen("in.txt","r",stdin);
int i,u,v,c,t1,t2,t3;
while(~scanf("%d%d",&n,&m))
{
edn=0;//初始化
memset(p,-1,sizeof(p));
sp=0;tp=n+1;
for(i=1;i<=n;i++)
{
scanf("%d %d",&t1,&t2);
addedge(0,i,t1);
addedge(i,0,t1);
addedge(tp,i,t2);
addedge(i,tp,t2);
//cout << 0<< "到" << i<< "的费用为" << t1<< endl;
//cout << i<< "到" << tp<< "的费用为" << t2<< endl;
//addedge(i,tp,1000007);
// addedge(0,i,1000007);
}
for(i=1;i<=m;i++){
scanf("%d %d %d",&t1,&t2,&t3);
addedge(t1,t2,t3);
addedge(t2,t1,t3);
// cout << t1<< "到" << t2<< "的费用为" << t3<< endl;
}
printf("%d\n",dinic(sp,tp));
}
return 0;
}