POJ 3469 (最小割)

求最小花费,如果不为最小费用最大流,可以考虑是否为最小割,对于图来说最大流=最小割,如果能把每条边的花费当作流即可。

题意是给2个cup,有n个任务,这个任务可以在左核工作,也可以在右核工作,在不同的核上工作有不同的花费。

然后有m个需要相互传输数据的模块,意思是a和b如果不是在同一个核上面,需要多花费一个传输数据的费用。

对于无向图的最大流,把无向边的k容量变成正向和逆向都为k的容量即可。

建图A-i-B.A-I+1-B这样的建图,如果需要交换数据的模块,就在这个i与i+1建立一条边,求最小割的时候如果在同一个核上面,那么必然不会连这条边,

如果不在同一个核上面,那么必然会连这条边(因为如果不连就还有流量),而且不会重新某个任务连了A还连了B,因为其对应的数据交换的任务必定连了一个核,

A和B显然只需要再连一个(或+个数据交换的费用)就必定为最小割了。

#include<cstdio>
 #include<cstring>
 #include<queue>
 #include<cmath>
 #include <iostream>
 using namespace std;
 const int Ni = 210;
 const int MAX = 1<<26;
 struct Edge{
     int u,v,c;
     int next;
 }edge[20*Ni];
 int n,m;
 int edn;//边数
 int p[Ni];//父亲
 int d[Ni];
 int sp,tp;//原点,汇点

 void addedge(int u,int v,int c)
 {
     edge[edn].u=u; edge[edn].v=v; edge[edn].c=c;
     edge[edn].next=p[u]; p[u]=edn++;

     edge[edn].u=v; edge[edn].v=u; edge[edn].c=0;
     edge[edn].next=p[v]; p[v]=edn++;
 }
 int bfs()
 {
     queue <int> q;
     memset(d,-1,sizeof(d));
     d[sp]=0;
     q.push(sp);
     while(!q.empty())
     {
         int cur=q.front();
         q.pop();
         for(int i=p[cur];i!=-1;i=edge[i].next)
         {
             int u=edge[i].v;
             if(d[u]==-1 && edge[i].c>0)
             {
                 d[u]=d[cur]+1;
                 q.push(u);
             }
         }
     }
     return d[tp] != -1;
 }
 int dfs(int a,int b)
 {
     int r=0;
     if(a==tp)return b;
     for(int i=p[a];i!=-1 && r<b;i=edge[i].next)
     {
         int u=edge[i].v;
         if(edge[i].c>0 && d[u]==d[a]+1)
         {
             int x=min(edge[i].c,b-r);
             x=dfs(u,x);
             r+=x;
             edge[i].c-=x;
             edge[i^1].c+=x;
         }
     }
     if(!r)d[a]=-2;
     return r;
 }

 int dinic(int sp,int tp)
 {
     int total=0,t;
     while(bfs())
     {
         while(t=dfs(sp,MAX))
         total+=t;
     }
     return total;
 }
 int main()
 {
 	freopen("in.txt","r",stdin);
     int i,u,v,c,t1,t2,t3;
     while(~scanf("%d%d",&n,&m))
     {
         edn=0;//初始化
         memset(p,-1,sizeof(p));
         sp=0;tp=n+1;
         for(i=1;i<=n;i++)
         {
         	scanf("%d %d",&t1,&t2);
             addedge(0,i,t1);
             addedge(i,0,t1);
             addedge(tp,i,t2);
			 addedge(i,tp,t2);
           //cout << 0<< "到" << i<< "的费用为" << t1<< endl;
		   //cout << i<< "到" << tp<< "的费用为" << t2<< endl;  
         	 //addedge(i,tp,1000007);
         	// addedge(0,i,1000007);
		 }
         for(i=1;i<=m;i++){
         	scanf("%d %d %d",&t1,&t2,&t3);
         	addedge(t1,t2,t3);
         	addedge(t2,t1,t3);
         //	cout << t1<< "到" << t2<< "的费用为" << t3<< endl;
		 }
         printf("%d\n",dinic(sp,tp));
     }
     return 0;
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值