python与分形0004 - 带刺的圆

分形,源自拉丁词'fractus',由数学家Benoit Mandelbrot创造,是一种在不同尺度上展现相同复杂性的数学概念。它们在自然界和艺术中广泛存在,通过自相似性和无限细节展现美丽。本文通过Python代码演示了如何创建分形图案,带领读者领略分形的迷人魅力。
摘要由CSDN通过智能技术生成

分形介绍

分形是一个悖论。

它惊人的简单,却又无限的复杂。

它很新,却又比尘埃更古老。

分形是什么?它们是从哪里来的?我们为什么要在乎?

20世纪非传统的数学家Benoit Mandelbrot在1975年从拉丁词fractus(意思是不规则的或破碎的)创造了分形这个词。

我们周围到处都可以看到分形的影子。

从最基本的角度看,分形是重复模式或公式的视觉表达,开始时很简单,然后逐渐变得更复杂。

在数学中,分形是欧氏空间的子集,其分形维数严格超过其拓扑维数。

分形在不同的尺度上表现相同,如Mandelbrot集合的连续放大。

分形通常在越来越小的尺度上表现出类似的模式,这种特性称为自相似性,也称为扩展对称或展开对称。

如果这种复制在每个尺度上都完全相同,就像在门格尔海绵中一样,那么它就被称为仿射自相似。

分形几何属于度量理论的数学分支。

分形结果

ca4f2a97e9591d5d7eedc3f4d51ff27d.png
带刺的圆

分形源码

# coding: utf-8

import turtle
import time
import math

window = turtle.Screen()
window.screensize()
window.setup(width=1.0, height=1.0, startx=None, starty=None)

turtle.bgcolor("black")  
turtle.pencolor("white")
turtle.hideturtle()

time.sleep(6)

a = 0 
b = 0 
turtle.speed(20)  
turtle.penup()  
turtle.goto(0,200)
turtle.pensize(2)
turtle.pendown()  
while(True):  
    turtle.right(b)
    turtle.forward(a)    
    a+=3  
    b+=1  
    if b == 242:  
        break

turtle.done()

分形视频

--EOF--

例行求粉,谢谢!

c5f7a70e274e3a9ab625ea149b2d108b.png
求粉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值