多维数组和矩阵的基础题型

本文主要介绍关于多维数组和矩阵的题型,从基础开始逐步深入。

一、顺时针打印矩阵

如下图:
在这里插入图片描述
解题方法:把矩阵分解为多个矩形框,从最外层开始打印,每次循环打印一个矩形框,一个循环里用四个while循环打印,每个while循环打印一个矩形的一条边。(用矩阵框的两个顶点进行循环的控制,当左上角的行号小于右下角的行号就退出外层循环)

代码如下:
写法一:

public class 顺时针打印矩阵 {
	public static void main(String [] args){
		int[][] a = {{1,2,3,4},
					{5,6,7,8},
					{9,10,11,12},
					{13,14,15,16}};
		print(a);
	}

	private static void print(int[][] a) {
		int leftUpRow = 0;
		int leftUpCol = 0;
		int rightLowRow = a.length-1;
		int rightLowCol = a[0].length-1;
		while(leftUpRow <= rightLowRow){
			int row = leftUpRow;
			int col = leftUpCol;
			while(col<=rightLowCol){//打印上面的一行
				System.out.print(a[row][col++] + " ");
			}
			row++;
			col--;//恢复
			while(row<=rightLowRow){//打印右边的一列
				System.out.print(a[row++][col] + " ");
			}
			col--;
			row--;
			while(col>=leftUpCol){//打印下面的一行
				System.out.print(a[row][col--] + " ");
			}
			row--;
			col++;
			while(row>leftUpRow){//打印左边的一列
				System.out.print(a[row--][col] + " ");
			}
			row++;
			//将左上角向右下方移, 右下角向左上方移
			leftUpRow++;  leftUpCol++;
			rightLowRow--; rightLowCol--; 
		}
	}
}

写法二:

 public static int[] spiralOrder(int[][] matrix) {
    	
    	if(matrix.length==0 || matrix[0].length==0 || matrix==null) return new  int[0];
    	int[] res = new int[matrix.length*matrix[0].length];
    	int index = 0;   //记录结果集的下标
    	int leftUpRow = 0;    //左上角的坐标
    	int leftUpCol = 0;
    	int rightLowRow = matrix.length -1;    //右下角的坐标
    	int rightLowCol = matrix[0].length -1;
    	
    	//把矩阵分为多层,从最外层开始打印
    	while(leftUpRow <= rightLowRow) {
    		//从坐上角开始打印
    		int row = leftUpRow;  
    		int col = leftUpCol;
    		
    		//打印上面一行
    		while(col<=rightLowCol) {  //为了防止最后一层最有一个数的情况,条件必须包含等于
    			res[index++] = matrix[row][col];
    			col++;
    		}
    		col--;  //恢复,因为最后一次自增导致越界了
    		row++;  
    		
    		//打印右边一列
    		while(row<rightLowRow && index<res.length) {
    			res[index++] = matrix[row][col];
    			row++;
    		}
    		
    		//打印下边一行
    		while(col>leftUpCol && index<res.length) {
    			res[index++] = matrix[row][col];
    			col--;
    		}
    		
    		//打印左边一列
    		while(row>leftUpRow && index<res.length) {
    			res[index++] = matrix[row][col];
    			row--;
    		}
    		
    		//打印完一层后,左上角和右下角都需要向中间移动一次
    		leftUpRow++;  leftUpCol++;
    		rightLowRow--; rightLowCol--;
    	}
    	return res;
    }

leetcode提交结果:
在这里插入图片描述

二、将0所在的行列清零

问题描述:如果矩阵中每一个元素为0,则将元素所在的行和列清零。

解题方法:首先扫描一遍数组,将其中元素为零的下标记录到一个辅助数组中。扫描完后再根据辅助数组中的记录进行清零。不能一边扫描一边进行清零,这会导致原本是不零的元素为零。

代码如下:

import java.util.Arrays;

public class 零所在的行列清零 {
	public static void main(String[] args){
		int[][] a = {{1,2,3,4},
				{5,0,7,8},
				{9,10,11,12},
				{13,14,0,16}};
		solve(a);
		for(int i=0; i<a.length; i++){
			System.out.println(Arrays.toString(a[i]));
		}
	}

	private static void solve(int[][] a) {
		int[] rowRecord = new int[a.length];
		int[] colRecord = new int[a[0].length];
		for(int i=0; i<a.length; i++){//扫描找出为零的元素
			for(int j=0; j<a[0].length; j++){
				if(a[i][j]==0){
					rowRecord[i] = 1;
					colRecord[j] = 1;
				}
			}
		}
		for(int i=0; i<a.length; i++){
			for(int j=0; j<a[0].length; j++){
				if(rowRecord[i]==1 || colRecord[j]==1){
					a[i][j] = 0;
				}
			}
		}
	}
}

三、Z形打印矩阵

如下图所示:
在这里插入图片描述
解题方法:每次打印一条斜线,从左上角开始。打印斜线有两种情况:第一种是走下坡路,第二种是走上坡路。对于上坡路到最上面一行应该向右走一步,到最左一列应该向下走一步(上坡路只有这两种情况)。对于下坡路走到最下面一行应该向右走一步,到最左一列应该向下走一步(下坡路只有这两种情况)。

代码如下:

public class 按照Z字型打印矩阵 {
	public static void main(String[] args){
		int[][] a = {{1,2,3,4},
				     {5,6,7,8},
				     {9,10,11,12},
				     {13,14,15,16}};
		printZ(a);
	}

	private static void printZ(int[][] a) {
		int row = 0; int r = a.length;
		int col = 0; int c = a[0].length;
		boolean flag = true;  //true表示上坡路,false表示下坡路
		while(row<r && col<c){
			if(flag){//走上坡路
				System.out.print(a[row][col] + " ");
				if(row==0 && col<c-1){//走到最上面的一行
					col++;
					flag = !flag;
					continue;
				}else if(col==c-1 && row<r-1){
					//走到最右边一列
					row++;
					flag = !flag;
					continue;
				}else{//正在上坡
					row--;
					col++;
				}
			}else{//走下坡路
				System.out.print(a[row][col] + " ");
				if(col==0 && row<r-1){
					//走到最左边的一列
					row++;
					flag = !flag;
					continue;
				}else if(row==r-1 && col<c-1){
					//走到最下面的一行
					col++;
					flag = !flag;
					continue;
				}else{
					//正在下坡
					row++;
					col--;
				}
			}
		}
	}
}

四、边界为1的最大子方阵

问题描述:给定一个N阶方阵,在这个方阵中,只有1和0两种值,返回边框全是1的最大正方形的边长长度。如下图:
在这里插入图片描述
解题方法:用枚举法,先假设最大正方形的边长是n(从n开始依次减一),然后去检测是否成立(依次遍历每一个元素,假设这个元素是最大正方形的左上角顶点,然后从这个顶点出发依次走遍四条边看是否全是1)。

代码如下:

public class 边界为1的最大子方阵 {
	public static void main(String[] args){
		int[][] a = {{0,1,1,1},
			     	 {0,1,0,1},
			         {0,1,1,1},
			         {0,1,0,1}};
		System.out.println(solve(a));
	}

	private static int solve(int[][] a) {
		int N = a.length;
		int n = N;
		int flag = 0;
		while(n>0){
			l2:for(int i=0; i<N; i++){
				if(i+n>N) break;
				l3:for(int j=0; j<N; j++){
					if(j+n>N) break;
					int row = i; int col = j;
					while(col<j+n){//扫描上边
						if(a[row][col++]==0) continue l3;
					}
					col--;
					while(row<i+n){//扫描右边
						if(a[row++][col]==0) continue l3;
					}
					row--;
					while(col>=j){//扫描下边
						if(a[row][col--]==0) continue l3; 
					}
					col++;
					while(row>i){//扫描左边
						if(a[row--][col]==0) continue l3;
					}
					return n;
				}
			}
			n--;
		}
		return n;
	}
}

五、字数组最大累加求和

问题描述:给定一个数组,返回子数组的最大累加和(子数组是原数组连续的一部分)。
在这里插入图片描述
解题方法:
方法一:暴力法,计算出以每一个元素开头的所有子数组的最大累加和,然后进行比较得出总的最大累加和。时间复杂度为O(n^2)。代码省略。

方法二:开始将最大值假设为0,从第一个元素开始累加每加一次就和最大值进行比较,如果大于最大值就将最大值进行替换。如果累加的结果得到一个负数,就舍弃已经累加过的部分,以下一个元素为起点从新开始累加,同样的,每加一次都与最大值进行比较,如果大于就将最大值进行替换。(结果得到负数就舍弃的原因是因为一段连续的数字累加得到负数,说明最大累加和的子数组肯定不包含这一段)。时间复杂度为O(n)。

代码如下:

public class 子数组最大累加和 {
	public static void main(String[] args){
		int[] a = {1,-2,3,5,-2,6,-1};
		System.out.println(findMax(a));
	}

	private static int findMax(int[] a) {
		int max = a[0];
		int sum = max;
		for(int i=1; i<a.length; i++){
			if(sum>0){
				sum = sum + a[i];
			}else{
				sum = a[i];
			}
			if(sum > max){
				max = sum;
			}
		}
		return max;
	}
}

六、子矩阵的最大累加和

问题描述:给定一个矩阵,返回子矩阵的最大累加和。
在这里插入图片描述
解题方法:暴力法就不说了,这题用到上一题的方法,上一题的方法是求一维数组的最大累加和,这题我们要做的就是将子矩阵转化为一维数组,起始行从第一行开始,算出第一行的最大子矩阵累加和,也就是一维数组的最大子数组的累加和(相当于将子矩阵的高固定为1)。之后再计算第一行到第二行的最大子矩阵累加和(相当于将子矩阵的高固定为2),以此类推。结束后,再将起始行放到第二行再进行一次计算。

代码如下:

import java.util.Arrays;

public class 子矩阵的最大累加和 {
	public static void main(String[] args){
		int[][] a = {{1,-2,3,5,-2,6,-1},
					 {3,-2,2,5,-2,6,2},
					 {1,-2,3,5,-2,6,-3},
					 {1,-2,3,5,2,6,-5},
					};
		System.out.println(findMatrix(a));
	}

	public static int findMatrix(int [][] a){
		int beginrow = 0;
		int r = a.length;
		int c = a[0].length;
		int[] sum = new int[c];
		int max = 0;
		while(beginrow<r){
			for(int i=beginrow; i<r; i++){
				//按列相加
				for(int j=0; j<c; j++){
					sum[j] += a[i][j];
				}
				int t = findMax(sum);
				if(t>max) max = t;
			}
			Arrays.fill(sum, 0);//将数组清零,开始下一轮。
			beginrow++;
		}
		return max;
	}
		
	private static int findMax(int[] a) {
		int max = a[0];
		int sum = max;
		for(int i=1; i<a.length; i++){
			if(sum>0){
				sum = sum + a[i];
			}else{
				sum = a[i];
			}
			if(sum > max){
				max = sum;
			}
		}
		return max;
	}
}

七、矩阵相乘

在这里插入图片描述
代码如下:

for(int i=0; i<n; i++){//m1的每一行
	for(int j=0; j<p; j++){//m2的每一列
		for(int k=0; k<m; k++){
			result[i][j] = m1[i][k]*m2[k][j];
		}
	}
}

八、矩阵顺时针旋转90度

矩阵的旋转

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逍遥自在”

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值