yolov3-tiny模型分析(含自己绘制的网络模型图)

本文介绍了一个基于YoloV3-Tiny版本的行人检测项目实践,该版本在网络结构上进行了简化,未使用残差层,仅保留两个不同尺度的Yolo输出层。文章分享了作者在实验室特定数据集上的训练成果,实现了良好的检测效果和较高的推断速度。
摘要由CSDN通过智能技术生成

最近在实验室做行人检测的项目,希望最后可以做到硬件上面去,所以挑选了yolov3的tiny版本。在实验室专有行人数据集下训练,检测效果还不错,在1080ti上推断速度达到了30fps, 这里和大家一起撸一下yolov3-tiny的网络结构:

相比于yolov3, tiny版本将网络压缩了许多,没有使用res层(残差层),只使用了两个不同尺度的yolo输出层,但总体思路还是可以借鉴yolov3的。这里首先给大家安利一款可视化网络模型的软件:Netron,目前的Netron支持主流各种框架的模型结构可视化工作,这里给出github链接: https://github.com/lutzroeder/Netron  支持windows,Linux,mac系统 。

本人的网络结构图也是照着Netron的结果绘制出来的,但是由于本人是检测单类,所以对网络参数略有改动,并且输入图像使用的是832*832大小,使用visio绘制的模型图如下:

 

这样大家可以结合darknet里面的yolov3-tiny.cfg文件,对照着模型图进行分析~~~

如果有什么不对的地方,欢迎拍砖!

评论 198
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值