自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(498)
  • 资源 (3)
  • 论坛 (1)
  • 收藏
  • 关注

原创 YOLOv4官方改进版来了!指标炸裂55.8% AP!Scaled-YOLOv4:扩展跨阶段局部网络【左侧关注下载】

YOLOv4-large在COCO上最高可达55.8 AP!速度也高达15 FPS!YOLOv4-tiny的模型实现了1774 FPS!(在RTX 2080Ti上测试)作者单位:YOLOv4原班人马(AlexeyAB等人)papers: 公号后台回复 SYOLO 获取code:https://github.com/WongKinYiu/PyTorch_YOLOv41 摘要我们展示了基于CSP方法的YOLOv4目标检测神经网络,可以上下缩放,并且适用于小型和大型网络,...

2020-11-18 00:16:59 3127 1

原创 (Pytorch) YOLOV4 : 训练自己的数据集【左侧有码】

项目地址:https://github.com/argusswift/YOLOv4-pytorch这份代码实现的逻辑非常清楚,我用这份代码训练了一版自己的数据集,主要一些数据集处理的代码需要相应的改动:1,yolov4_config.py改动内容:(1)路径DATA_PATH = ""PROJECT_PATH = ""DETECTION_PATH=""MODEL_TYPE = { "TYPE": "YOLOv4"}(2)训练参数TRAIN = {...

2020-10-30 16:15:42 7191 5

原创 干货 | YOLOV5 训练自动驾驶数据集,并转成tensorrt【左侧有码】

准备数据集 环境配置 配置文件修改 训练 推理 转Tensorrt 遇到的Bugs一、数据集准备1,BDD数据集让我们来看看BDD100K数据集的概览。BDD100K是最大的开放式驾驶视频数据集之一,其中包含10万个视频和10个任务,目的是方便评估自动驾驶图像识别算法的的进展。每个高分辨率视频一共40秒。该数据集包括超过1000个小时的驾驶数据,总共超过1亿帧。这些视频带有GPU / IMU数据以获取轨迹信息。该数据集具有地理,环境和天气多样性,从而能让模型能...

2020-10-10 16:17:56 1371 2

原创 超越YOLOv4-tiny!YOLObile:移动设备上的实时目标检测 [左侧有码]

点击这里的链接,获取下面资料: 资源二:深度学习视频教程 1. “花书”深度学习圣经——动手学深度学习 2. 《计算机视觉深度学习入门》共5门视频 3. 《深度学习进阶视频课程》 YOLObile:通过压缩编译协同设计在移动设备上进行实时目标检测,在三星S20上速度可达17FPS!比YOLOv4快5倍!同时mAP和FPS均优于YOLOv4-tiny!paper:https://arxiv.org/abs/200...

2020-09-17 23:09:07 1594

原创 YOLOv4 详解版!一句话总结:速度差不多的精度碾压,精度差不多的速度碾压!【左侧有码】

精彩内容YOLOv4来了!43.5%mAP+65FPS 精度速度最优平衡, 各种调优手段释真香!作者团队:Alexey Bochkovskiy&中国台湾中央研究院论文链接:https://arxiv.org/pdf/2004.10934.pdf代码链接:https://github.com/AlexeyAB/darknet1 Introduction...

2020-07-09 17:54:43 62971 7

原创 COCO 迎来新榜首!DetectoRS以54.7mAP成就目前最高精度检测网络

关注点击关注上方“AI深度视线”,并“星标”公号技术硬文,第一时间送达!精彩内容这篇DetectoRS以mAP54.7的成绩刷新COCO目标检测网络榜榜首,同时还以47.1%拿下COCO实例分割第一、49.6AQ拿下COCO全景分割第一!完美诠释强者恒强。论文地址:https://arxiv.org/pdf/2006.02334.pdf代码链接:https://github.com/joe-siyuan-qiao/DetectoRS1 Introduction..

2020-06-10 21:05:56 827

原创 实战 | 巧用位姿解算实现单目相机测距

点击关注上方“AI深度视线”,并“星标”公号技术硬文,第一时间送达!在项目过程中,总遇到需要单目视觉给出目标测距信息的情况,其实单目相机本不适合测距,即使能给出,精度也有限,只能在有限制的条件下或者对精度要求很不高的情况下进行应用。该文结合SLAM方法,通过3D-2D解算相机位姿的方式给出一种另类的单目测距方法,行之有效。1 相机模型要实现单目测距,那么相机参数是单目测距所必不可少的。相机参数有内参和外参之分: 相机内参:是与相机自身特性相关的参数,比如相机的焦距、像素大小等;.

2020-06-10 21:03:00 612 1

原创 mAP提升40%!YOLO3改进版—— Poly-YOLO:更快,更精确的检测和实例分割【左侧有码】

关注上方公号,获取更多干货!精彩内容YOLOv3改进版来了!与YOLOv3相比,Poly-YOLO的训练参数只有其60%,但mAP却提高了40%!并提出更轻量的Poly-YOLO Lite,还扩展到了实例分割上!通读完这篇文章,结合自己使用YOLOV3的经验,觉得这篇改进确实良心之作,改在点上,多边形实例分割也极具创新。代码刚刚开源:https://gitlab.com/irafm-ai/poly-yolo作者团队:奥斯特拉发大学1 Introduction 摘要...

2020-05-30 14:00:22 5027 2

原创 YOLOV4 预训练模型 yolov4.conv.137 网盘链接

下载路径:文件包括:darknet 工程/yolov4预训练模型/作者训练好的yolov4模型/yolov4文章链接: https://pan.baidu.com/s/1kwAwefd3absOrZSTAGnbhQ提取码: x3gz拿走,不谢~另,YOLOV4的文章解读如下:YOLOv4 详解版!一句话总结:速度差不多的精度碾压,精度差不多的速度碾压!...

2020-05-07 14:00:29 6229 3

原创 又一款速度、精度超越Centernet和YOLO3的网络:SaccadeNet!

表现SOTA!在COCO上,以28 FPS 达到40.4 %mAP的性能,优于CenterNet、YOLOV3和CornerNet等网络。作者团队:马里兰大学帕克分校&Wormpex AI研究院1 引言 思路来源: 大多数现有的目标检测算法会先关注某些目标区域,然后预测目标位置。但是,神经科学家发现,人类不会以固定的稳定性注视场景。取而代之的是,人眼四...

2020-04-13 17:12:40 1568

原创 超越FPN和NAS-FPN! FPG:《Feature Pyramid Grids》特征金字塔网格强势登场!

FPG(Feature Pyramid Grids):特征金字塔网格来了 !性能优于FPN、NAS-FPN等金字塔网络。作者团队:商汤&港中文(陈恺&林达华)&南洋理工大学&FAIR该文章首发在arxiv上,新投稿于CVPR。1 引言特征金字塔网络已在目标检测中被广泛采用,以改进特征表示以更好地处理尺度变化。 设计思路 在...

2020-04-13 17:09:41 559 4

原创 CVPR 2020 | 北航提出:通过由粗到精特征自适应进行跨域目标检测,表现SOTA!

性能优于PDA、MDA和SWDA等网络。作者团队:北京航空航天大学1 引言近年来,在基于深度学习的目标检测中见证了巨大的进步。但是,由于domain shift问题,将现成的检测器应用于未知的域会导致性能显著下降。为了解决这个问题,本文提出了一种新颖的从粗到精的特征自适应方法来进行跨域目标检测。在粗粒度阶段,与文献中使用的粗糙图像级或实例级特征对齐不同,...

2020-04-13 16:56:24 1363

原创 BiSeNet V2出来了!72.6%的mIOU, 156FPS的速度!让分割飞起来!

精彩介绍做实时分割的同学一定对BiseNetv1比较熟悉,是2008年旷视提出的综合精度和速度比较好的一个网络。时隔两年,又看到这个熟悉的名字。BiseNet2出来了!在Cityscapes可达 72.6%mIoU,速度为156 FPS!性能优于DFANet、SwiftNet等网络。新投在了CVPR,文章放在了axiv上。文章链接:https://arxiv.org/abs/2...

2020-04-13 16:41:00 7037 4

原创 关注公号: AI深度视线 | CVPR 2020 | 更快,更强!SOLOv2:COCO 41.7AP+31FPS 实时实例分割新SOTA!

更快,更强!SOLOv2:COCO 41.7AP+31FPS 实时实例分割新SOTA!1 引言摘要:在这项工作中,我们旨在构建一个性能强大的简单,直接和快速的实例分割框架。我们遵循SOLOv1方法的原理。" SOLO:按位置分割对象"。重要的是,我们通过动态学习目标分割器的mask head 。具体来说,将mask分支解耦为mask kernel分支和mask特征分支...

2020-03-26 20:10:51 605

原创 关注公号:AI深度视线 | CVPR 2020 | CentripetalNet:目标检测新网络,COCO 48 % AP超现所有Anchor-free网络

1 引言摘要:基于关键点的检测器性能还不错,不过匹配错关键点的情况还是经常发生,并极大地影响了探测器的性能。作者在这篇文章中提出一种使用向心偏移来对同一实例中的角点进行配对的CentripetalNet向心网络。向心网络可以预测角点的位置和向心偏移,并匹配移动结果对齐的角。结合位置信息,这种方法比传统的嵌入方法更准确地匹配角点。角池将边界框内的信息提取到边界上。为了使这些...

2020-03-24 12:52:09 1866 2

原创 关注公号:AI深度视线 | EfficientDet: 论文理解,MAP50.9目前最高,模型小4倍!

精彩内容EfficientDet-d6在52M参数和229BFLOPs的情况下,实现了map在COCO数据集的最高水平(50.9),比之前最好的检测器更小,使用更少的FLOPs (13xless FLOPs),但仍然更准确(+0.2% mAP)。传送门:https://github.com/google/automl/tree/master/efficiententdet1引...

2020-03-19 12:32:44 1752 2

原创 何恺明 PointRend:Image Segmentation as Rendering 论文解析,代码开源

精彩内容FAIR(何恺明新作) PointRend:将图像分割视为渲染(Rendering) 《PointRend: Image Segmentation as Rendering》 作者(豪华)团队:Facebook人工智能实验室(Alexander Kirillov/吴育昕/何恺明/RossGirshick)。原文公号链接:AI深度视线传送门:https://github.co...

2020-03-16 21:33:28 1085

转载 基于pytorch的保存和加载模型参数的方法

保存和加载模型参数有两种方式:方式一:torch.save(net.state_dict(),path):功能:保存训练完的网络的各层参数(即weights和bias)其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth)net2.load_state_dict(torch.load(path)):功能:加载保存到path中的各层参数到神经网络注意:不可以直接为torch.load_state_dict(path),此函数

2021-04-15 17:27:04 10

转载 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

这篇文章主要介绍了解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧背景在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误。原因DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型...

2021-04-15 17:22:24 3

转载 关于qt缺少xcb问题终极解决办法

关于qt缺少xcb问题终极解决办法 问题背景 系统环境 qt版本 问题描述 解决过程 走的弯路 解决问题的关键 总结问题背景系统环境中标麒麟,龙芯平台qt版本qt5.6问题描述原来的Qt程序是qt5.3.2版本,但是由于各种原因,升级成了qt5.6版本。编译完成后放在其他机器上报错缺少xcb,报错如下:This application failed to start beca...

2021-04-01 11:29:37 39

转载 更换Anaconda的下载源为国内源的办法

1、目前国内可用的anaconda下载源清华镜像anaconda源:channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ - https://mirro...

2021-03-23 17:24:41 92

原创 pytorch 多GPU

device_id = torch.cuda.device_count()device = torch.cuda.get_device_name(range(device_id))if torch.cuda.device_count()>1: model = nn.DataParallel(model) model = model.to(device)elif train_on_gpu: model = model.to(device)

2021-03-15 15:59:31 24

转载 用gdb调试程序笔记: 以段错误(Segmental fault)为例[转]

1.背景介绍2.程序中常见的bug分类3.程序调试器(如gdb)有什么用4.段错误(Segmental fault)介绍5.gdb调试入门一、背景介绍这个笔记主要介绍开源的程序调试器(gdb)的入门知识,目的是使unix/linux环境的编程新手能够快速学会使用gdb调试程序的方法,同时也是对我使用gdb的一个经验总结。本文假设你能使用简单的unix/linux命令并能用gcc(GNU C Compiler, GNU C 语言编译器)编译程序,当然有编程经验更好。:)为帮助你理解和操...

2021-03-09 18:07:54 52

原创 PointRCNN代码里的那些事儿

1,回归loss计算:不直接回归location,而是把location回归问题转成分类问题,x方向6个bin,z方向6个bin,y方向1个bin,yaw角9个bin,一个bin10°rcnn_reg 输出为 batchsize*46,这46维 = 6_xbin_crossentropy_loss + 6_zbin_crossentropy_loss +6_xbin_l1_loss +6_zbin_l1_loss + 1_ybin_crossentropy_loss + 9_yaw_ent...

2021-03-09 10:41:38 42

原创 subprocess.CalledProcessError: Command ‘[‘ninja‘, ‘-v‘]‘ returned non-zero exit status 1.

将anaconda环境下的 lib/python3.6/site-packages/torch/utils/cpp_extension.py文件将['ninja','-v']改成['ninja','--v'] 或者['ninja','--version']

2021-03-08 09:44:20 728 1

转载 三维空间坐标系变换-旋转矩阵

空间中三维坐标变换一般由三种方式实现,第一种是旋转矩阵和旋转向量;第二种是欧拉角;第三种是四元数。这里先介绍旋转矩阵(旋转向量)与欧拉角实现三维空间坐标变换的方法以及两者之间的关系。 这里以常见的世界坐标系与相机坐标系间的变换为例。一、首先介绍从相机坐标系转换到世界坐标系,也就是比较通用的body到世界坐标系间的转换。 那么旋转的欧拉角按从世界坐标系转换到相机坐标系的过程,先按z轴旋转、之后y轴旋转、之后x轴旋转,最终得到相机坐标系,得到的角度分别是yaw、pitch...

2021-02-25 10:34:48 88

原创 tensor 循环拼接

import torcha = torch.tensor([0,1,2,3,4],[5,6,7,8,9])a.shape = [2,5]假如2为batchsize,5为数据,目标: a循环拼接自己3次成[2,3,5],[[[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]]],[[5,6,7,8,9],[5,6,7,8,9],[5,6,7,8,9]]]通过下面命令可以实现:a.unsqueeze(1) = [2,1,5]a.rep.

2021-02-01 17:33:24 59

转载 Pytorch在训练过程中常见的问题

1 Input type (CUDAFloatTensor) and weight type (CPUFloatTensor) should be the same仔细看错误信息,CUDA和CPU,输入数据x和模型中的权重值类型不一样,一般来说是因为模型的参数不在GPU中,而输入数据在GPU中,通过添加model.cuda()将模型转移到GPU上以解决这个问题。2 Input type (CUDADoubleTensor) and weight type (CUDAFloatTensor) s...

2021-01-18 11:42:18 198

转载 PointNet++中的FP模块插值的代码实现细节

1. 前言处于科研需要,我需要理解PointNet++中的Interpolated (propogated) features,即特征插值计算过程(如果不需要当然就不去理解它啦)。它的公式所示:它在代码中的实现如下所示:# known 表示已知点的位置信息 [m,4]# known_feats 表示已知点的特征信息 [m,C]# unknown 表示需要插值点的位置信息 [n,4],一般来所,n>m# interpolated_feats 表示需要插值点的特征信息 [n,C...

2020-12-31 13:17:24 75

转载 目标匹配:匈牙利算法的python实现

一、问题描述问题描述:N个人分配N项任务,一个人只能分配一项任务,一项任务只能分配给一个人,将一项任务分配给一个人是需要支付报酬,如何分配任务,保证支付的报酬总数最小。问题数学描述:  二、实例分析---全排列法在讲将匈牙利算法解决任务分配问题之前,先分析几个具体实例。以3个工作人员和3项任务为实例,下图为薪酬图表和根据薪酬图表所得的cost矩阵。  利用最简单的方法(全排列法)进行求解,计算出所有分配情况的总薪酬开销,然后求最小值。total_cost1 = 250 +

2020-12-29 14:37:38 121

转载 从PointNet到PointNet++理论及代码详解

从PointNet到PointNet++理论及代码详解1. 点云是什么 1.1 三维数据的表现形式 1.2 为什么使用点云 1.3 点云上以往的相关工作 2. PointNet 2.1 基于点云的置换不变性 2.1.1 由对称函数到PointNet(vanilla) 2.1.2 理论证明 2.2 基于点云的旋转不变性 2.3 网络总体结构 2.4 实验结果和网络的鲁棒性 2.5 代码解析 3. PointNet++ 3.1 Po

2020-12-22 15:47:31 118

转载 PointNet++作者的视频讲解文字版

PointNet++作者的视频讲解文字版 转载请注明本文链接:https://www.cnblogs.com/Libo-Master/p/9759130.htmlPointNet: Deep Learning on Point Sets for 3D Classification and SegmentationPointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric SpacePaper readi

2020-12-09 16:09:16 110

转载 PointNet系列论文解读

PointNet系列论文解读1.简介此系列论文首先提出了一种新型的处理点云数据的深度学习模型-PointNet,并验证了它能够用于点云数据的多种认知任务,如分类、语义分割和目标识别。不同于图像数据在计算机中的表示通常编码了像素点之间的空间关系,点云数据由无序的数据点构成一个集合来表示。因此,在使用图像识别任务的深度学习模型处理点云数据之前,需要对点云数据进行一些处理。目前采用的方式主要有两种: 将点云数据投影到二维平面。此种方式不直接处理三维的点云数据,而是先将点云投影到某些特定视角再处理,如

2020-12-07 16:16:35 46

原创 This application failed to start because it could not find or load the Qt platform plugin “xcb“.

BUG: This application failed to start because it could not find or load the Qt platform plugin "xcb". Reinstalling the application may fix this problem. Aborted解决办法:$ gedit ~/.bashrcinsert next path at the end of the fileexport LD_LIBRARY

2020-11-19 19:00:09 233

转载 pytorch 结合代码讲解神经网络实现的[基本步骤]

准备数据 定义网络结构model 定义损失函数 定义优化算法 optimizer 训练 准备好tensor形式的输入数据和标签(可选) 前向传播计算网络输出output和计算损失函数loss 反向传播更新参数 以下三句话一句也不能少: 将上次迭代计算的梯度值清0optimizer.zero_grad() 反向传播,计算梯度值loss.backward() 更新权值参数optimizer.step() 保存训练集上的loss和验证集上的loss以及准确率以及打印

2020-10-15 14:09:58 108

转载 python 切片操作整理

彻底搞懂Python切片操作   在利用Python解决各种实际问题的过程中,经常会遇到从某个对象中抽取部分值的情况,切片操作正是专门用于完成这一操作的有力武器。理论上而言,只要条件表达式得当,可以通过单次或多次切片操作实现任意切取目标值。切片操作的基本语法比较简单,但如果不彻底搞清楚内在逻辑,也极容易产生错误,而且这种错误有时隐蔽得比较深,难以察觉。本文通过详细例子总结归纳了切片操作的各种情况。若有错误和不足之处请大牛指正!一、Python可切片对象的索引方式Python可切片对象的索引方式包

2020-10-14 17:19:44 79

转载 深入浅出Yolo系列之Yolov5核心基础知识完整讲解

深入浅出Yolo系列之Yolov5核心基础知识完整讲解作者 | 江大白转自:https://zhuanlan.zhihu.com/p/172121380对Yolov4的相关基础知识做了比较系统的梳理,但Yolov4后不久,又出现了Yolov5,虽然作者没有放上和Yolov4的直接测试对比,但在COCO数据集的测试效果还是很可观的。很多人考虑到Yolov5的创新性不足,对算法是否能够进化,称得上Yolov5而议论纷纷。但既然称之为Yolov5,也有很多非常不错的地方值得我们学习。.

2020-10-13 12:14:19 2442

转载 《视觉SLAM十四讲》详细笔记

《视觉SLAM十四讲》笔记摘抄ch02 初识SLAM 经典视觉SLAM框架 SLAM问题的数学表述 ch03 三维空间刚体运动 旋转矩阵 点和向量,坐标系 坐标系间的欧氏变换 变换矩阵与齐次坐标 齐次坐标(Homogeneous Coordinate)的优势 优势1:方便判断是否在直线或平面上 优势2:方便表示线线交点和点点共线 优势3:能够区分向量和点 优势4:能够表达无穷远点 优势5:能够简洁的表

2020-10-10 17:18:44 190

转载 Ubuntu18.04下安装OpenCv依赖包libjasper-dev无法安装的问题

近期需要在ubuntu18.04系统上安装opencv但是在安装依赖包的过程中,有一个依赖包,libjasper-dev在使用命令 sudo apt-get install libjaster-dev提示:errorE: unable to locate libjasper-dev后来google到解决办法,复制到这里sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security m...

2020-10-10 10:38:05 133

转载 libpng12-0 Missing In Ubuntu 18.04, 19.10 Or 20.04[左侧有码]

Fix libpng12-0 Missing In Ubuntu 18.04, 19.10 Or 20.04Logix Updated on May 1, 2020 fix, libpng12, tweaks, ubuntuIn this article you'll find a very easy to apply fix that will allow installing and running applications that depend on libpng12-0 in Ub.

2020-10-10 10:17:51 167

yolov4-conv-137 和 yolov4-weights

yolov4: yolov4-conv-137 预训练模型 + yolov4 作者训练好的模型 不想花积分的,可以去这个链接直接下载:https://blog.csdn.net/baobei0112/article/details/105971290

2020-05-07

BRIEF特征描述子

特征点描述子 brief 算法 2010提出,是速度最快的特征点匹配算法,但是不支持旋转。

2011-12-30

FPGA的SDRAM读写时序图

SDRAM时序图,帮助你了解SDRAM的读取过程,很快掌握SDRAM的应用

2011-09-06

luo_bosir的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除