- 博客(572)
- 资源 (3)
- 收藏
- 关注

原创 CIA-SSD那点事儿
1,数据kbox_np_ops.change_box3d_center_(gt_boxes, [0.5, 0.5, 0], [0.5, 0.5, 0.5])
2021-06-08 17:35:46
416
2

原创 Pointpillar 代码那点事
1, 每个location有两个anchor class_name: "car" sizes: 4.460000038146973 sizes: 1.8799999952316284 sizes: 1.6799999475479126 rotations: 0.0 rotations: 1.5700000524520874class_name: "person" sizes: 0.5600000023841858 sizes: 0.620000004768371...
2021-05-19 09:47:10
868

原创 ubuntu18 增加删除用户和组命令
1,用户命令创建用户sudo useradd -m -s /bin/bash user_name删除用户#连同文件目录一起删除sudo derlser -r user_name赋予sodu权限把新添加的用户名后面也加上root后面的权限:vim /etc/sudoers查看用户所在的组:id user_name2,组命令查看所有组cat /etc/group新建组groupadd 组名groupmod -n 新的组名...
2021-04-20 17:09:46
832

原创 PointRCNN代码里的那些事儿
1,回归loss计算:不直接回归location,而是把location回归问题转成分类问题,x方向6个bin,z方向6个bin,y方向1个bin,yaw角9个bin,一个bin10°rcnn_reg 输出为 batchsize*46,这46维 = 6_xbin_crossentropy_loss + 6_zbin_crossentropy_loss +6_xbin_l1_loss +6_zbin_l1_loss + 1_ybin_crossentropy_loss + 9_yaw_ent...
2021-03-09 10:41:38
544

原创 YOLOv4官方改进版来了!指标炸裂55.8% AP!Scaled-YOLOv4:扩展跨阶段局部网络【左侧关注下载】
YOLOv4-large在COCO上最高可达55.8 AP!速度也高达15 FPS!YOLOv4-tiny的模型实现了1774 FPS!(在RTX 2080Ti上测试)作者单位:YOLOv4原班人马(AlexeyAB等人)papers: 公号后台回复 SYOLO 获取code:https://github.com/WongKinYiu/PyTorch_YOLOv41 摘要我们展示了基于CSP方法的YOLOv4目标检测神经网络,可以上下缩放,并且适用于小型和大型网络,...
2020-11-18 00:16:59
6281
1

原创 (Pytorch) YOLOV4 : 训练自己的数据集【左侧有码】
项目地址:https://github.com/argusswift/YOLOv4-pytorch这份代码实现的逻辑非常清楚,我用这份代码训练了一版自己的数据集,主要一些数据集处理的代码需要相应的改动:1,yolov4_config.py改动内容:(1)路径DATA_PATH = ""PROJECT_PATH = ""DETECTION_PATH=""MODEL_TYPE = { "TYPE": "YOLOv4"}(2)训练参数TRAIN = {...
2020-10-30 16:15:42
9536
10

原创 干货 | YOLOV5 训练自动驾驶数据集,并转成tensorrt【左侧有码】
准备数据集 环境配置 配置文件修改 训练 推理 转Tensorrt 遇到的Bugs一、数据集准备1,BDD数据集让我们来看看BDD100K数据集的概览。BDD100K是最大的开放式驾驶视频数据集之一,其中包含10万个视频和10个任务,目的是方便评估自动驾驶图像识别算法的的进展。每个高分辨率视频一共40秒。该数据集包括超过1000个小时的驾驶数据,总共超过1亿帧。这些视频带有GPU / IMU数据以获取轨迹信息。该数据集具有地理,环境和天气多样性,从而能让模型能...
2020-10-10 16:17:56
3737
5

原创 超越YOLOv4-tiny!YOLObile:移动设备上的实时目标检测 [左侧有码]
点击这里的链接,获取下面资料: 资源二:深度学习视频教程 1. “花书”深度学习圣经——动手学深度学习 2. 《计算机视觉深度学习入门》共5门视频 3. 《深度学习进阶视频课程》 YOLObile:通过压缩编译协同设计在移动设备上进行实时目标检测,在三星S20上速度可达17FPS!比YOLOv4快5倍!同时mAP和FPS均优于YOLOv4-tiny!paper:https://arxiv.org/abs/200...
2020-09-17 23:09:07
2870

原创 git 命令一点点学习
master分支的代码领先自己的分支,git 如何把master分支代码合并到自己的分支切换到主分支git checkout master使用git pull 把领先的主分支代码pull下来git pull切换到自己的分支git checkout xxx(自己的分支)把主分支的代码merge到自己的分支git merge master为推送当前分支并建立与远程上游的跟踪,使用git push --set-upstream origin plogic然后输入
2020-07-08 19:33:40
240

原创 COCO 迎来新榜首!DetectoRS以54.7mAP成就目前最高精度检测网络
关注点击关注上方“AI深度视线”,并“星标”公号技术硬文,第一时间送达!精彩内容这篇DetectoRS以mAP54.7的成绩刷新COCO目标检测网络榜榜首,同时还以47.1%拿下COCO实例分割第一、49.6AQ拿下COCO全景分割第一!完美诠释强者恒强。论文地址:https://arxiv.org/pdf/2006.02334.pdf代码链接:https://github.com/joe-siyuan-qiao/DetectoRS1 Introduction..
2020-06-10 21:05:56
1778

原创 实战 | 巧用位姿解算实现单目相机测距
点击关注上方“AI深度视线”,并“星标”公号技术硬文,第一时间送达!在项目过程中,总遇到需要单目视觉给出目标测距信息的情况,其实单目相机本不适合测距,即使能给出,精度也有限,只能在有限制的条件下或者对精度要求很不高的情况下进行应用。该文结合SLAM方法,通过3D-2D解算相机位姿的方式给出一种另类的单目测距方法,行之有效。1 相机模型要实现单目测距,那么相机参数是单目测距所必不可少的。相机参数有内参和外参之分: 相机内参:是与相机自身特性相关的参数,比如相机的焦距、像素大小等;.
2020-06-10 21:03:00
2241
1

原创 mAP提升40%!YOLO3改进版—— Poly-YOLO:更快,更精确的检测和实例分割【左侧有码】
关注上方公号,获取更多干货!精彩内容YOLOv3改进版来了!与YOLOv3相比,Poly-YOLO的训练参数只有其60%,但mAP却提高了40%!并提出更轻量的Poly-YOLO Lite,还扩展到了实例分割上!通读完这篇文章,结合自己使用YOLOV3的经验,觉得这篇改进确实良心之作,改在点上,多边形实例分割也极具创新。代码刚刚开源:https://gitlab.com/irafm-ai/poly-yolo作者团队:奥斯特拉发大学1 Introduction 摘要...
2020-05-30 14:00:22
8618
3

原创 YOLOV4 预训练模型 yolov4.conv.137 网盘链接
下载路径:文件包括:darknet 工程/yolov4预训练模型/作者训练好的yolov4模型/yolov4文章链接: https://pan.baidu.com/s/1kwAwefd3absOrZSTAGnbhQ提取码: x3gz拿走,不谢~另,YOLOV4的文章解读如下:YOLOv4 详解版!一句话总结:速度差不多的精度碾压,精度差不多的速度碾压!...
2020-05-07 14:00:29
8771
4

原创 又一款速度、精度超越Centernet和YOLO3的网络:SaccadeNet!
表现SOTA!在COCO上,以28 FPS 达到40.4 %mAP的性能,优于CenterNet、YOLOV3和CornerNet等网络。作者团队:马里兰大学帕克分校&Wormpex AI研究院1 引言 思路来源: 大多数现有的目标检测算法会先关注某些目标区域,然后预测目标位置。但是,神经科学家发现,人类不会以固定的稳定性注视场景。取而代之的是,人眼四...
2020-04-13 17:12:40
2148

原创 超越FPN和NAS-FPN! FPG:《Feature Pyramid Grids》特征金字塔网格强势登场!
FPG(Feature Pyramid Grids):特征金字塔网格来了 !性能优于FPN、NAS-FPN等金字塔网络。作者团队:商汤&港中文(陈恺&林达华)&南洋理工大学&FAIR该文章首发在arxiv上,新投稿于CVPR。1 引言特征金字塔网络已在目标检测中被广泛采用,以改进特征表示以更好地处理尺度变化。 设计思路 在...
2020-04-13 17:09:41
944
4

原创 CVPR 2020 | 北航提出:通过由粗到精特征自适应进行跨域目标检测,表现SOTA!
性能优于PDA、MDA和SWDA等网络。作者团队:北京航空航天大学1 引言近年来,在基于深度学习的目标检测中见证了巨大的进步。但是,由于domain shift问题,将现成的检测器应用于未知的域会导致性能显著下降。为了解决这个问题,本文提出了一种新颖的从粗到精的特征自适应方法来进行跨域目标检测。在粗粒度阶段,与文献中使用的粗糙图像级或实例级特征对齐不同,...
2020-04-13 16:56:24
2476

原创 BiSeNet V2出来了!72.6%的mIOU, 156FPS的速度!让分割飞起来!
精彩介绍做实时分割的同学一定对BiseNetv1比较熟悉,是2008年旷视提出的综合精度和速度比较好的一个网络。时隔两年,又看到这个熟悉的名字。BiseNet2出来了!在Cityscapes可达 72.6%mIoU,速度为156 FPS!性能优于DFANet、SwiftNet等网络。新投在了CVPR,文章放在了axiv上。文章链接:https://arxiv.org/abs/2...
2020-04-13 16:41:00
15483
5

原创 关注公号: AI深度视线 | CVPR 2020 | 更快,更强!SOLOv2:COCO 41.7AP+31FPS 实时实例分割新SOTA!
更快,更强!SOLOv2:COCO 41.7AP+31FPS 实时实例分割新SOTA!1 引言摘要:在这项工作中,我们旨在构建一个性能强大的简单,直接和快速的实例分割框架。我们遵循SOLOv1方法的原理。" SOLO:按位置分割对象"。重要的是,我们通过动态学习目标分割器的mask head 。具体来说,将mask分支解耦为mask kernel分支和mask特征分支...
2020-03-26 20:10:51
837

原创 关注公号:AI深度视线 | CVPR 2020 | CentripetalNet:目标检测新网络,COCO 48 % AP超现所有Anchor-free网络
1 引言摘要:基于关键点的检测器性能还不错,不过匹配错关键点的情况还是经常发生,并极大地影响了探测器的性能。作者在这篇文章中提出一种使用向心偏移来对同一实例中的角点进行配对的CentripetalNet向心网络。向心网络可以预测角点的位置和向心偏移,并匹配移动结果对齐的角。结合位置信息,这种方法比传统的嵌入方法更准确地匹配角点。角池将边界框内的信息提取到边界上。为了使这些...
2020-03-24 12:52:09
2276
2

原创 关注公号:AI深度视线 | EfficientDet: 论文理解,MAP50.9目前最高,模型小4倍!
精彩内容EfficientDet-d6在52M参数和229BFLOPs的情况下,实现了map在COCO数据集的最高水平(50.9),比之前最好的检测器更小,使用更少的FLOPs (13xless FLOPs),但仍然更准确(+0.2% mAP)。传送门:https://github.com/google/automl/tree/master/efficiententdet1引...
2020-03-19 12:32:44
1987
2

原创 何恺明 PointRend:Image Segmentation as Rendering 论文解析,代码开源
精彩内容FAIR(何恺明新作) PointRend:将图像分割视为渲染(Rendering) 《PointRend: Image Segmentation as Rendering》 作者(豪华)团队:Facebook人工智能实验室(Alexander Kirillov/吴育昕/何恺明/RossGirshick)。原文公号链接:AI深度视线传送门:https://github.co...
2020-03-16 21:33:28
1962
原创 深度学习面试题
它接受输入和偏差的加权和作为任何激活函数的输入。Sigmoid、ReLU、Tanh 都是常见的激活函数。4.CSPX:借鉴CSPNet网络结构,由三个卷积层和 X个Res unit模块Concate组成。5.SPP: 采用1x1,5x5,9x9,13x13的最大池化的方式,进行多尺度融合。8,当图像尺寸变为2倍,CNN的参数数量变为几倍?7,你通常使用哪些指标来评估你的模型?1.CBM: Yolov4网络结构中最小的组件,由。中的残差结构,让网络可以构建的更深。激活函数在神经网络中的作用是什么?
2022-11-22 11:41:28
538
转载 linux 多相机绑定usb口
即可查看video0的设备信息,从上往下找到KERNELS=="2-7", ATTRS{idVendor}=="0c45", ATTRS{idProduct}=="6366", 修改对应的值即可。其中SYMLINK+="video1_cam"为建立的虚拟端口连接,打开相机的时候,将数字序号替换为”/dev/video1_cam”即可打开绑定的对应相机。版权声明:本文为CSDN博主「龙性的腾飞」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。3. 查看相机设备信息。.....
2022-08-31 15:42:44
297
原创 ros远程订阅
在主机板上执行命令roscore,在pc机上执行命令rosnode list可以查看到节点信息。1.在配置过程中,HOSTNAME和URI不可以写localhost,要直接写ip地址。2.由于时间同步在ros中有重要作用,因此网络时间同步:使用chrony。将远程主机(robot)和本地pc机连到同一个局域网下,pc机ip地址 10.81.14.35 --接收端。主机板ip地址 10.81.16.235 --远程主机。确保两者之间可以ping通。在pc机上,配置如下。在主机板上,配置如下。...
2022-08-30 10:15:57
269
原创 Livox Horizon 使用说明
每台览沃 LiDAR 设备拥有一个唯一的广播码。广播码由14位字符长度的序列号和一个额外的字符组成( 1、2或者 3),一共 15 位字符长。(1)修改ws_livox/src/livox_ros_driver/launch/livox_lidar_rviz.launch 配置文件。(2)修改ws_livox/src/livox_ros_driver/config/livox_lidar_config.json 配置文件。2,安装Livox-ros-driver。1,安装Livox-SDK。
2022-08-19 16:46:02
886
转载 ubuntu18.04更改本地IP
其中,192.168.1.233即为你所更换的局域网内的IP地址。2、冒号后面一定要跟一个空格,否则会报错。运行如下语句,无报错即为IP更改成功。1、层级结构一定要按如下顺序;
2022-08-19 16:33:57
746
转载 Linux Ubuntu安装后发现时间不对,如何解决?
一开始我自己按照第二种情况来解决显示时间不对的情况,但是捣鼓了一通之后,发现显示时间还是没有改变,后来才突然想到可能是时区不对。安装完ubuntu后,发现我的ubuntu显示的时间不对,和网络的时间根本对不上。一般来说,显示时间不正确的情况就两种情况,第一:是你系统设置的时区不对;第二:时区是正确的,但是系统本身的时间不对。最后,我们再次输入 date -R 命令查看时间的时候,就可以发现时区已经改为了东八区了。如果我们查看到自己系统的时区不正确的话,那么我们只要重新设置时区就可以让时间显示正确了。...
2022-08-12 15:11:07
1397
1
原创 yolov5 C++部署学习笔记
yolov5 C++部署学习笔记2, yolov5.cpp1,分配显卡cudaSetDevice(DEVICE);2, 加载engine模型
2022-06-24 09:05:51
2279
转载 深度学习 超参数调整【转】
关于训练深度学习模型最难的事情之一是你要处理的参数的数量。无论是从网络本身的层宽(宽度)、层数(深度)、连接方式,还是损失函数的超参数设计和调试,亦或者是学习率、批样本数量、优化器参数等等。这些大量的参数都会有网络模型最终的有效容限直接或者间接的影响。面对如此众多的参数,如果我们要一一对其优化调整,所需的无论是时间、资源都是不切实际。结果证实一些超参数比其它的更为重要,因此认识各个超参数的作用和其可能会造成的影响是深度学习训练中必不可少的一项重要技能。 目前,超参数调整一般分为手动调整和自动优化超参数
2022-06-14 17:49:35
1899
转载 [BEV系列]BEVFormer: Learning Bird’s-Eye-ViewRepresentation from Multi-Camera Images viaSpatiotemporal
摘要(Abstract)3D视觉感知任务,包括基于多摄像头图像的3D检测和地图分割,对于自动驾驶系统至关重要。在这项工作中,我们提出了一个名为BEVFormer的新框架,该框架通过时空变换学习统一的Bev特征表达,以支持多个自主驾驶感知任务。...
2022-06-14 17:17:26
520
转载 在Linux服务器上如何配置用户的sudo权限,教你配置如何让用户只能读写文件、上传文件、下载文件,但是不能删除文件
在Linux服务器上如何配置用户的sudo权限,教你配置如何让用户只能读写文件、上传文件、下载文件,但是不能删除文件random_w于 2020-09-04 14:43:12 发布 959收藏 2分类专栏: # 服务器部署相关教程 文章标签: rm sudo NOPASSWD wheel ALL版权服务器部署相关教程 专栏收录该内容18 篇文章 0 订阅订阅专栏 最近公司的中间件服务器因为同事的误操作,导致系统硬盘分区表丢失,系统直接挂掉了,好在最后恢复了,恢复后,老大有一个需求,...
2022-05-31 19:35:26
1350
原创 TensorRT层和每个层支持的精度模式
下表列出了TensorRT层和每个层支持的精确模式。它还列出了该层在深度学习加速器(DLA)上运行的能力。有关附加约束的更多信息,请参见 DLA Supported LayersDeveloper Guide :: NVIDIA Deep Learning TensorRT Documentation.有关每个TensorRT层的更多信息,请参见TensorRT层。要查看每个层支持的特定属性列表,请参考TensorRT API文档API Reference :: NVIDIA Deep Learnin.
2022-05-04 19:00:26
981
原创 onnx2tensorrt
bool onnxToTRTModel(const std::string& modelFile, // name of the onnx model unsigned int maxBatchSize, // batch size - NB must be at least as large as the batch we want to run with IHostMemory*& trtModelStream) // output buffer for the...
2022-04-29 16:48:19
134
原创 目标跟踪MOT
1, 对于跟踪模块,目前来说更好的解决方案,比如使用MOTDT[13],此算法在DeepSort的基础上加入了轨迹评分的机制,目前像FairMOT、JDE使用的跟踪模块都是MOTDT,从精度和速度上此算法表现都是较优的。...
2022-04-24 16:57:15
2581
转载 CMake构建CUDA项目中使用的CMakeLists.txt配置
# CMakeLists.txt for G4CU projectproject(test_cuda_project)# required cmake versioncmake_minimum_required(VERSION 2.8)# packagesfind_package(CUDA)# nvcc flagsset(CUDA_NVCC_FLAGS -gencode arch=compute_20,code=sm_20;-G;-g)#set(CUDA_NVCC_FLAGS -genco.
2022-03-19 17:30:37
3195
1
yolov4-conv-137 和 yolov4-weights
2020-05-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人