解题思路:
首先题目所给的四个方向,并不是说只有四次的方向改变,而是可能会一直继续,那么不管怎么变化,讨论一下相交的情况只有三种,只要找出这三种的规律即可,三种交叉情况如下:
即使不相交再绕几圈,只要符合这个规律都需要满足相同的条件,第一种很简单,就是第i根要比i-2根长,且i-1比i-3短才能相交,第二种情况需要满足第i-1根与i-3根同样长,且i-2根与i-4根长度差要小于等于第i根长度,第三种情况较为复杂,i-1根比(i-3根 - i-5根)要长,i-2要比i-4长,i-1比i-3短,i比i-2与i-4的差值要长才能相交,代码在这里插入代码片
如下:
class Solution {
public:
bool isSelfCrossing(vector<int>& distance) {
int n = distance.size();
for (int i = 3; i < n; ++i) {
// 第 1 类路径交叉的情况
if (distance[i] >= distance[i - 2] && distance[i - 1] <= distance[i - 3]) {
return true;
}
// 第 2 类路径交叉的情况
if (i == 4 && (distance[3] == distance[1]
&& distance[4] >= distance[2] - distance[0])) {
return true;
}
// 第 3 类路径交叉的情况
if (i >= 5 && (distance[i - 3] - distance[i - 5] <= distance[i - 1]
&& distance[i - 1] <= distance[i - 3]
&& distance[i] >= distance[i - 2] - distance[i - 4]
&& distance[i - 2] > distance[i - 4])) {
return true;
}
}
return false;
}
};