解题思路:
用二分法的方法确定第K小的数对距离,首先定义距离的上下界,为0和最大值与最小值之差,然后定义mid,同样用二分法的方式查找不大于mid距离的数对数量,如果小于k,增大mid的大小,left = mid + 1,否则减小mid的大小,right = mid,代码如下:
class Solution {
public:
int smallestDistancePair(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int n = nums.size();
int left = 0, right = nums[n - 1] - nums[0];
while(left < right) {
int mid = (left + right) / 2;
int count = 0;
for(int i = 0; i < n; i ++) {
// 二分统计距离小于mid的个数
int index = lower_bound(nums.begin(), nums.begin() + i, nums[i] - mid) - nums.begin();
count += i - index;
}
if(count < k) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
};
第二种方法双指针也是同样的思路,只不过在记录距离小于mid的部分,更换使用了双指针的方式,可以进一步降低时间复杂度,每次用i固定住右界限,移动index让其刚好满足距离小于mid(距离是指nums[i] - nums[index]),统计个数,代码如下:
class Solution {
public:
int smallestDistancePair(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int n = nums.size();
int left = 0, right = nums[n - 1] - nums[0];
while(left < right) {
int mid = (left + right) / 2;
int count = 0;
// 双指针统计个数
for(int i = 0, index = 0; i < n; i ++) {
while(nums[i] - nums[index] > mid) {
index ++;
}
count += i - index;
}
if(count < k) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
};