高斯混合模型学习笔记

本文介绍了高斯混合模型(GMM)及其与单高斯模型(SGM)的区别,详细阐述了GMM的参数估计过程,包括EM算法的E步和M步。同时,还讲解了K-means算法的聚类步骤和收敛条件,帮助理解两种不同的数据建模方法。
摘要由CSDN通过智能技术生成


0 预备知识

l  设离散型随机变量X的分布律为


则称 为X的数学期望均值

l  设连续型随机变量X的概率密度函数(PDF)为

数学期望定义为

称为随机变量X的方差称为X的标准差

正态分布 ~

概率密度函数

l  设(X, Y)为二维随机变量,若存在,则称其为随机变量X和Y的协方差,记为

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值