C语言实现图的最短路径Floyd算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/HEYIAMCOMING/article/details/76584531

Floyd算法直接使用二维数组求出所有顶点到所有顶点的最短路径。

D代表顶点到顶点的最短路径权值和的矩阵。

P代表对应顶点的最小路径的前驱矩阵。

以下程序在DEV C++中调试运行通过。

#include <stdio.h>  
                                             
#define INFINITY 65535

typedef int VertexType;   //顶点是字符型
typedef int EdgeType;   //边是整型
typedef struct    //图的邻接矩阵存储结构
{  

    VertexType vexs[9];  //顶点向量  

    EdgeType edges[9][9];     //邻接矩阵  

    int vexnum,arcnum;    //图中当前的顶点数和边数  

}MGraph;  

/* 邻接矩阵的建立*/ 

void CreateGraph(MGraph *G)  
{   
    int i,j,k,weight;  
    int ch1,ch2;  

    printf("请输入顶点数和边数(输入格式为:顶点数,边数):");  

    scanf("%d,%d",&(G->vexnum),&(G->arcnum));  

    printf("请输入顶点名称(输入格式为:a,b,c...):");  

    for(i=0;i<G->vexnum;i++)  
    {  
       getchar();
       scanf("%d",&(G->vexs[i]));  
    }  
		
    for(i=0;i<G->vexnum;i++)  
        for(j=0;j<G->vexnum;j++)  
        	if(i==j)
        		G->edges[i][j]=0;
        	else
           	 	G->edges[i][j]=INFINITY;  

        printf("请输入每条边对应的两个顶点名称(输入格式为:a,b):\n");  

        for(k=0;k<G->arcnum;k++)  
        {  
           // getchar();  
            printf("请输入第%d条边的两个顶点名称:",k+1);  
            scanf("%d,%d",&ch1,&ch2);  
            for(i=0;ch1!=G->vexs[i];i++);  
            for(j=0;ch2!=G->vexs[j];j++);  
            getchar(); 
			printf("请输入第%d条边的权值:",k+1);  
            scanf("%d",&weight);	
            G->edges[i][j]=weight; 
			G->edges[j][i]=weight;  
        } 
	
}  

void ShortestPath_Floyd(MGraph G,int P[9][9],int D[9][9])
{
	int v,w,k;
	for(v=0;v<G.vexnum;v++)//初始化D和P 
	{
		for(w=0;w<G.vexnum;w++)
		{
			D[v][w]=G.edges[v][w];
			P[v][w]=w;
		}
	}
	
	for(k=0;k<G.vexnum;k++)
	{
		for(v=0;v<G.vexnum;v++)
		{
			for(w=0;w<G.vexnum;w++)
			{
				if(D[v][w]>(D[v][k]+D[k][w]))
				{//如果经过下标为k顶点路径比原两点间路径更短,将当前两点间权值设为更小的一个 
				D[v][w]=D[v][k]+D[k][w];
				P[v][w]=P[v][k];
				}
				
			}
		}
	}
}
void main()  
{  
    MGraph G;  
    CreateGraph(&G);
    int i,j;
    printf("edgesnum:%d\n",G.arcnum);
    printf("vexesnum:%d\n",G.vexnum);
    for(i=0;i<9;i++)
    {
    	for(j=0;j<9;j++)
    		printf("%d ",G.edges[i][j]);
    	printf("\n");
	}
    int v,w,k;
    int P[9][9];
    int D[9][9];
    printf("%d\n",P);
    printf("%d\n",D);
    ShortestPath_Floyd(G,P,D);
   for(v=0;v<G.vexnum;v++)//显示路径 
    {
    	for(w=v+1;w<G.vexnum;w++)
    	{
    		printf("v%d-v%d weight:%d ",v,w,D[v][w]);
    		k=P[v][w];
    		printf("path:%d",v);
    		while(k!=w)
    		{
    			printf("->%d",k);
    			k=P[k][w];
			}
			printf("->%d\n",w);
		}
	}
} 

运行结果如图所示。


整个算法的时间复杂度是O(n^3)。


在编写过程中遇到了以下错误:

在62行

[Error]subscripted value is neither array nor pointer nor vector

意思是

下标的值不是数组或指针或向量

当时我这一行是这样写的

void ShortestPath_Floyd(MGraph G,int** P,int** D)

因为在上一篇文章Dijkstra算法中一维数组作为函数参数是用的int*,没有问题

所以在这里二维数组我就想当然地用了int**

但是如果参数传入int**类型,在函数里就不能使用P[v][w]访问二维数组的值

编译器不能正确为它寻址,需要模仿编译器的行为把P[v][w]这样的式子手工转变为:



*((int*)P + n*v + w);
所以在被调用函数中对形参数组定义时可以指定所有维数的大小,也可以省略第一维的大小说明
故改为void ShortestPath_Floyd(MGraph G,int P[9][9],int D[9][9])就可以编译通过。


没有更多推荐了,返回首页