矩阵的运算

§2  矩阵的运算
一、加法

   都是 矩阵,则 加法 定义为

显然,

   

二、数乘

         是数,  矩阵,则 数乘 定义为

       显然

              

三、乘法

乘法运算比较复杂,首先看一个例子

设变量  到变量 的线性变换为

变量  到变量 的线性变换为

那么,变量  到变量 的线性变换应为

定义矩阵

 

的乘积为

按以上方式定义的乘法具有实际意义。由此推广得到一般定义

          ,则乘法定义为

其中

    

 :两个矩阵相乘要求前一个矩阵的列数等于后一个矩阵的行数;乘积矩阵的行数为前一个矩阵的行数,列数为后一个矩阵的列数;乘积矩阵的第  行,第 列元素为前一个矩阵的第 行元素与后一个矩阵的第 行元素对应相乘再相加。

 :设   ,则

 

一个必须注意的问题 

1.      ,则 成立,当 时, 不成立;

2.   即使   ,则  阶方阵,而  阶方阵;

3.   如果   都是 阶方阵,例如  ,则 ,而 

综上所述,一般  (即矩阵乘法不满足交换率)。

但是下列性质显然成立:

    

  

几个运算结果:

1  

2  

3 .若   矩阵,  阶单位阵,则 ;若  阶单位阵,则 

4.   线性变换的矩阵表示:

  

   

5.   线性方程组的矩阵表示:

 

  

矩阵的 幂

           

例:证明 

证:用归纳法:  时,显然成立,假定 时成立,则 

从而结论成立。

由于  是直角坐标旋转 角度变换的系数矩阵,故而 是旋转了 角度变换的系数矩阵。

四、转置

  ,记

则称   转置矩阵

显然,

       

对称矩阵的定义:若矩阵  满足 (即 ),则称 对称阵

 :设  矩阵,证明  阶对称阵,  阶对称阵。

 :设 ,且   阶单位阵, 

证明:   是对称阵,  

  ,故 是对称阵。

 

五、方阵的行列式

  阶方阵,其元素构成的 阶行列式称为方阵的行列式,记为   

显然,

      

 :设

 

其中   的代数余子式, 称为 的伴随阵。

证明:  

证:设 

 

 

例:设    )阶实方阵,且  ,求 

解:注意到

  ,得     

由于  ,故   

六、共轭矩阵

 为复矩阵,  的共轭复数,则称  的共轭矩阵。

显然,

      

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值