机器学习笔记(十四):TensorFlow实战六(经典卷积神经网络:AlexNet )

1 - 引言

2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。这个网络算是一个具有突破性意义的模型
首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,让之后的网络模型构建变得更加复杂,并且通过GPU加速越来越得到关注
论文原文:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

神经网络整体结构如下图所示:
在这里插入图片描述

Alexnet 模型的创新之处:

  • ReLU
    一般神经元的激活函数会选择sigmoid函数或者tanh函数,然而Alex发现在训练时间的梯度衰减方面,这些非线性饱和函数要比非线性非饱和函数慢很多。在AlexNet中用的非线性非饱和函数是f=max(0,x),即ReLU。实验结果表明,要将深度网络训练至training error rate达到25%的话,ReLU只需5个epochs的迭代,但tanh单元需要35个epochs的迭代,用ReLU比tanh快6倍。

  • 双GPU加速
    为提高运行速度和提高网络运行规模,作者采用双GPU的设计模式。并且规定GPU只能在特定的层进行通信交流。其实就是每一个GPU负责一半的运算处理。作者的实验数据表示,two-GPU方案会比只用one-GPU跑半个上面大小网络的方案,在准确度上提高了1.7%的top-1和1.2%的top-5。值得注意的是,虽然one-GPU网络规模只有two-GPU的一半,但其实这两个网络其实并非等价的。

  • LRN局部响应归一化

ReLU本来是不需要对输入进行标准化,但本文发现进行局部标准化能提高性能。
b x , y i = α x , y i / ( k + α ∑ j = m a x ( 0 , i − n / 2 ) m i n ( N − 1 , i + n / 2 ) ( α x , y j ) 2 ) b^i_{x,y}=\alpha^i_{x,y}/(k+\alpha\sum^{min(N-1,i+n/2)}_{j=max(0,i-n/2)}(\alpha^j_{x,y})^2) bx,yi=αx,yi/(k+αj=max(0,in/2)min(N1,i+n/2)(αx,yj)2)

这种响应归一化实现了一种模仿真实神经元的横向抑制,从而在使用不同内核计算的神经元输出之间产生较大的竞争

  • 重叠池化
    实验表示使用 带交叠的池化的效果比的传统要好,在top-1和top-5上分别提高了0.4%和0.3%,在训练阶段有避免过拟合的作用。

  • Dropout
    Dropout是一种随机使神经元失活的一种正则化方法,可以有效的避免过拟合。在我们之前实现用LeNet-5来识别MNIST训练集的时候就使用了这种方法

下面让我们来详细的介绍AlexNet

2 - AlexNet模型结构分析

在这里插入图片描述

2.1 - Conv1阶段

在这里插入图片描述

  • 输入数据:227x227x3
  • 卷积核:11x11x3
  • 卷积核移动步长:4
  • 卷积核数量:96
  • 池化层:3x3
  • 池化层移动步长:2
  • 输出数据:27x27x96

2.2 - Conv2阶段

在这里插入图片描述

  • 输入数据:27x27x96
  • 卷积核:5x5
  • 卷积核数量:256
  • 卷积核移动步长:2
  • padding : 2
  • 池化层:3x3
  • 池化层移动步长:2
  • 输出数据:13x13x256

2.3 - Conv3阶段

在这里插入图片描述

  • 输入数据:13x13x256
  • 卷积核:3x3
  • pading : 1
  • 卷积核数量:384
  • 输出数据:13x13x384

2.4 - Conv4阶段

在这里插入图片描述

  • 输入数据13x13x384
  • 卷积核:3x3
  • pad:1
  • 卷积核数量:384
  • 输出数据:1313384

2.5 - Conv5阶段

在这里插入图片描述

  • 输入数据13x13x384
  • 卷积核:3x3
  • pad:1
  • 卷积核数量:256
  • 输出数据:1313256

之后三个阶段为全连接阶段参数如图所示

2.6 FC6阶段

在这里插入图片描述

2.7 FC6阶段

在这里插入图片描述

2.8 FC6阶段

在这里插入图片描述

3 - TensorFlow搭建AlexNet模型:

Keras简介:

Keras中文手册 https://keras-cn.readthedocs.io/en/latest/

Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:

简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
支持CNN和RNN,或二者的结合
无缝CPU和GPU切换
Keras适用的Python版本是:Python 2.7-3.6

Keras是一个在TensorFlow之上的高级深度学习框架,可以理解为Keras为TensorFlow的使用提供了多种方便的API,我们可以通过Keras提供的API快速的使用TensorFlow搭建我们所需要的神经网络模型

def AlexNet():

    model = Sequential()
    model.add(Conv2D(96,(11,11),strides=(4,4),input_shape=(227,227,3),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(256,(5,5),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))
    return model

以上是使用Kears快速搭建的一个AlexNet结构。
完整的AlexNet应用模型(Tensorflow)版github地址:
https://github.com/kratzert/finetune_alexnet_with_tensorflow

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴回答您的问题!本文将重点介绍如何使用tensorflow和sklearn实现线性回归,并比较两种方法的优缺点。 一、线性回归介绍 线性回归是一种基本的机器学习算法,用于预测一个连续的数值。它是一种监督学习算法,需要有一个训练集来训练模型。在线性回归中,我们假设目标变量与自变量之间是线性关系,因此我们尝试找到一条最佳拟合直线来描述它们之间的关系。 二、使用tensorflow实现线性回归 TensorFlow是一个由Google开发的开源机器学习框架,它具有高效、灵活和易于使用的特点,广泛应用于各个领域。下面我们将介绍如何使用TensorFlow实现线性回归。 1、导入库 ``` import tensorflow as tf import numpy as np import matplotlib.pyplot as plt ``` 2、生成数据 为了演示线性回归,我们需要生成一些数据。我们将生成一个简单的数据集,其中有100个随机数,分别作为X和Y。 ``` X = np.random.rand(100).astype(np.float32) Y = X * 0.1 + 0.3 ``` 3、定义模型 在TensorFlow中,我们需要定义一个计算图来描述我们的模型。在本例中,我们将使用一个简单的线性模型 y = wx + b,其中w和b是我们需要学习的参数。 ``` w = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = w * X + b ``` 4、定义损失函数 我们需要定义一个损失函数来衡量模型的性能。在本例中,我们将使用均方误差作为损失函数。 ``` loss = tf.reduce_mean(tf.square(y - Y)) ``` 5、定义优化器 我们需要定义一个优化器来最小化损失函数。在本例中,我们将使用梯度下降优化器。 ``` optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) ``` 6、训练模型 我们需要训练模型来学习参数w和b。在本例中,我们将使用1000次迭代来训练模型。 ``` init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(1000): sess.run(train) if step % 100 == 0: print(step, sess.run(w), sess.run(b)) ``` 7、可视化结果 我们可以使用matplotlib库来可视化模型的结果。 ``` plt.plot(X, Y, 'ro', label='Original data') plt.plot(X, sess.run(w) * X + sess.run(b), label='Fitted line') plt.legend() plt.show() ``` 三、使用sklearn实现线性回归 scikit-learn是一个流行的Python机器学习库,提供了许多常用的算法和工具。现在我们将介绍如何使用scikit-learn实现线性回归。 1、导入库 ``` import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression ``` 2、生成数据 我们使用与上面相同的数据集。 ``` X = np.random.rand(100, 1) Y = X * 0.1 + 0.3 ``` 3、定义模型 在scikit-learn中,我们需要实例化一个线性回归模型。 ``` model = LinearRegression() ``` 4、训练模型 我们可以使用fit()方法来训练模型。 ``` model.fit(X, Y) ``` 5、可视化结果 我们可以使用matplotlib库来可视化模型的结果。 ``` plt.plot(X, Y, 'ro', label='Original data') plt.plot(X, model.predict(X), label='Fitted line') plt.legend() plt.show() ``` 四、对比两种方法的优缺点 使用TensorFlow实现线性回归的优点: 1. TensorFlow是一个灵活的框架,可以轻松地实现各种机器学习算法。 2. TensorFlow提供了高效的计算图实现,可以利用GPU进行加速。 3. TensorFlow具有良好的可视化工具,可以帮助我们更好地理解和调试模型。 使用TensorFlow实现线性回归的缺点: 1. TensorFlow需要对TensorFlow的基本原理有一定的了解,对初学者来说可能有一定的难度。 2. TensorFlow的语法相对较为复杂,需要花费一些时间来学习和理解。 3. TensorFlow需要编写大量的代码来实现模型,相对于scikit-learn可能稍微繁琐一些。 使用scikit-learn实现线性回归的优点: 1. scikit-learn是一个简单易用的Python机器学习库,可以快速实现各种机器学习算法。 2. scikit-learn提供了大量的实用工具和函数,可以帮助我们更好地处理数据和调试模型。 3. scikit-learn的语法相对较为简单,对初学者来说比较友好。 使用scikit-learn实现线性回归的缺点: 1. scikit-learn的灵活性相对较低,不如TensorFlow那么灵活。 2. scikit-learn的计算效率可能比TensorFlow略低。 3. scikit-learn的可视化工具相对较少,不如TensorFlow那么强大。 以上就是使用TensorFlow和scikit-learn实现线性回归的方法和比较。希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值