Problem B: qwb与矩阵
Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 1097 Solved: 210
[ Submit][ Status][ Web Board]
Description
做完了辣么多的数学题,qwb好好睡了一觉。但是他做了一个梦:
有一个n*m的矩阵,qwb在这个矩阵的左上角(1,1),终点在右下角(n,m)。
每个格子中有小钱钱,也可能没有,还有可能是要交过路费的, 并且行走方向必须是靠近终点的方向。往下走一次只能走一格,往右走一次可以走一格也可以走到当前列数的倍数格。
比如当前格子是(x,y),那么可以移动到(x+1,y),(x,y+1)或者(x,y*k),其中k>1。
qwb希望找到一种走法,使得到达右下角时他能够有最多的小钱钱。
你能帮助他吗?
Input
第一行是测试例数量 T (T<=100),接下来是T组测试数据。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,1<=m<=10000);
接下去给你一个n*m的矩阵,每个格子里有一个数字 k (-100<=k<=100)代表小钱钱的数量。 ∑nm<=3,000,000
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,1<=m<=10000);
接下去给你一个n*m的矩阵,每个格子里有一个数字 k (-100<=k<=100)代表小钱钱的数量。 ∑nm<=3,000,000
Output
每组数据一行,输出L先生能够获得小钱钱的最大值(可能为负数)。
Sample Input
1
3 8
9 10 10 10 10 -10 10 10
10 -11 -1 0 2 11 10 -20
-11 -11 10 11 2 10 -10 -10
Sample Output
52
HINT
分析:到达当前状态的方式 可以是从列的因子倍数到达,可以是 dp[i][j-1],可以是dp[i-1][j]。按这个方式dp就可以了,提前先处理出 j 有哪些因子,用筛法处理,不然会超时。
AC代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
int dp[22][10010];
int map[22][10010];
vector<int>v[10010];
int main()
{
int T;
scanf("%d",&T);
for(int i=1;i<10010;i++)
for(int j=i*2;j<10010;j+=i)
v[j].push_back(i);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&map[i][j]);
}
}
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
dp[i][j]=-1e9;
dp[1][1]=map[1][1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
dp[i][j]=max(dp[i][j],max(dp[i][j-1],dp[i-1][j])+map[i][j]);
for(int k=0;k<v[j].size();k++)
{
dp[i][j]=max(dp[i][j],dp[i][v[j][k]]+map[i][j]);
}
}
}
printf("%d\n",dp[n][m]);
}
}